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Unbalanced Power in Four-Wire Systems
and Its Reactive Compensation
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Abstract—Unbalanced power of three-phase stationary linear
loads with a neutral conductor, supplied with sinusoidal sym-
metrical voltages and its reactive compensation, is the subject of
this paper. A novel power equation of such loads is developed.
The suggested power equation is based on the decomposition of
the load current into Current Physical Components (CPC). This
paper shows that all powers can be expressed in terms of the load
parameters and this creates fundamentals for design of balancing
reactive compensators capable of improving the power factor to
unity. A reactive balancing compensator is composed, in general,
of two compensators in the A and Y configuration. This paper
presents a method of calculation of LC parameters of such a
compensator using the CPC-based power theory.

Index Terms—Current Physical Components (CPCs), power
definitions, power theory.

I. INTRODUCTION

OADS IN residential grids and in commercial buildings

are mainly single-phase loads supplied from a three-phase
transformer in the A /Y configuration, as shown in Fig. 1, with
a grounded neutral conductor.

Some level of imbalance is a common property of such loads.
This imbalance could be particularly visible in traction grids.
These loads are generally nonlinear and time invariant, thus gen-
erating harmonics, but can be regarded at the lowest level of ap-
proximation as stationary linear, time-invariant (LTI) loads. Al-
though powers in three-phase systems with nonsinusoidal volt-
ages and currents are the subject of continuous concern and
studies [1]-[6], there is still substantial confusion on powers
in systems with unbalanced loads even if voltages and currents
are sinusoidal and the supply voltages are symmetrical. There-
fore, the subject of this paper is confined just to such a situation,
meaning powers and reactive compensation in four-wire linear
systems with sinusoidal and symmetrical supply voltage.

The load imbalance causes the load current asymmetry, thus
apart from the current symmetrical component of the positive
sequence, the load current may also contain components of the
zero and the negative sequence. It causes an increase in energy
loss on both sides of the transformer, which may require an in-
crease of its power rating [7].

Manuscript received October 31, 2013; revised January 28, 2014; accepted
March 08, 2014. Date of publication November 20, 2014; date of current version
January 21, 2015. Paper no. TPWRD-01241-2013.

The authors are with the School of Electrical Engineering and Computer
Science, Louisiana State University, Baton Rouge, LA 70803 USA (e-mail:
phaley06@hotmail.com).

Digital Object Identifier 10.1109/TPWRD.2014.2314599

Compensation of the zero-sequence component of the load
current can be done only by a compensator installed on the
transformer secondary side. This can be accompanied with com-
pensation of the negative-sequence component of the secondary
current, meaning with load balancing. This enables the reduc-
tion of energy loss and the required power rating of the trans-
former. Compensation of the load imbalance is usually com-
bined with reactive power compensation.

Compensators can be built as pulse-width-modulated
(PWM)-based switching compensators (SCs), known as
“active power filters,” or “power conditioners,” as reactive
compensators (RC), or as hybrid devices, composed of both of
them.

There is a huge selection of literature on switching compen-
sators and on control of these devices using various approaches
to power theory, to mention only a few of them [8]-[12]. Much
less was published on reactive compensators, in particular, on
reactive balancing compensators.

High-power transistors, digital data acquisition and digital-
signal-processing (DSP) systems, developed mainly in the last
two decades, are needed for SCs construction. Components of
RCs, meaning inductors and capacitors, belong to the same class
of circuit elements from which stationary three-phase systems,
as those shown in Fig. 1, are built. The technology needed for
reactive compensators construction has been available incom-
parably longer than that needed for SCs. Despite that, the state
of the development of reactive compensator technology is lag-
ging behind the technology of switching compensators.

Switching compensators have a number of advantages over
reactive compensators. The most important is the fact that they
can be easily operated as adaptive devices, while this is not so
easy in the case of reactive compensators. On the other side,
power constraints for reactive compensators are not as tough as
those for switching compensators. A lag in the development of
the power theory of three-phase systems can be blamed for a lag
in the development of the reactive compensator’s technology.

Control of SCs does not require any advanced knowledge of
power properties of three-phase systems. It is enough to gen-
erate a reference signal proportional to an undesirable com-
ponent of the load current. In the case of RCs design, it has
to be known how compensated currents depend on the circuit
parameters.

Although Lyon concluded [14] in 1920 that the load imbal-
ance reduces the power factor, quantitative effects of the load
imbalance upon the apparent power were not known for a long
time. Substantial confusion on how the apparent power S for
three-phase systems should be defined was the main reason for
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Fig. 1. Stationary single-phase loads supplied from three-phase line with neu-
tral.

that. Two options of definitions were suggested in [15] and dis-
cussed in [17], namely
S =84 =Urlp +Usls + Urly (1)
referred to as arithmetical apparent power and
S=Sc= VP +Q? #)

referred to as geometrical apparent power.
Buchholz in [16] suggested a different definition, namely

S=8a= U2+ U+ U R+ I+ ()

At symmetrical voltages and currents, these three definitions
are numerically equivalent. When the load is unbalanced and,
consequently, the supply currents are asymmetrical, these three
definitions provide different values of the apparent power and,
hence, different values of the power factor A = P/S.

The energy loss in a source that supplies unbalanced load and
its power factor was studied in [18]. It was found that with re-
spect to loss of energy at its delivery, the power factor A had
a right value only if the apparent power S was calculated ac-
cording to the Buchholz definition (3).

The idea of reactive compensation is very old; the first bal-
ancing compensator was developed by Steinmetz and presented
[13]in 1917. Research on reactive compensation was continued
with results reported in several papers, such as [19]-[29].

There are a number of different approaches to reactive bal-
ancing compensator design. It could be based, as in the case
of Steinmetz [13], on searching for a circuit that would elimi-
nate the oscillating component of the instantaneous power or by
compensation of the negative- and zero-sequence symmetrical
components of the load current. Even optimization methods,
which do not require very detailed knowledge of power prop-
erties of electrical systems, can be used for that purpose.

The concept of the “unbalanced power” was not used in ref-
erences cited above. To the authors’ best knowledge, the unbal-
anced power occurred in a power equation for the first time in
1988 in [30] on powers in systems with a nonsinusoidal supply
voltage. Studies in that paper were confined only to three-phase,
three-wire systems however.

At the assumption that the supply voltage is symmetrical and
sinusoidal, powers in such a system have to satisfy the power
equation

5% = P2+ Q%+ D? 4)
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where D,, denotes the unbalanced power, defined as
Du = ‘4”””2' (5)

Symbol A denotes the magnitude of the unbalanced admittance
of the load, which is specified in terms of equivalent line-to-line
admittances of the load as follows:

A=Ae" = —(Ysy +aY 1R+ a"Ygs) o = 1772 (6)

and ||u|| denotes a three-phase rms value of the supply voltage
which, for sinusoidal voltages, is equal to

lul| = /UE + U2 + U2. (7)

The line voltage rms values in the last formula should be mea-
sured with respect to an artificial zero. Unfortunately, an equiv-
alent power equation for three-phase, four-wire systems has not
yet been developed.

A power equation with an unbalanced power was also intro-
duced in 2000 by IEEE Standard 1459 [32], [33]. This equation
for sinusoidal supply voltage has the form

S22 =Pt 4 Q4 S (8)

where S. = S, and PT and Q1 are the active and reactive
powers of the positive-sequence symmetrical component of the
supply voltages and currents. When the supply voltage is sinu-
soidal and symmetrical, then PT = P, QT = @, and there is
no difference between unbalanced powers in (5) and (8). Other-
wise, these are two different power quantities.

Equation (8) does not provide fundamentals for the design of
reactive compensators however. The unbalanced power Sy has
occurred in this equation as a consequence of the observation
that in unbalanced systems

P24+ < 82 )

and this has led to the definition of the unbalanced power Sy as
a sort of complementary power, defined in [33, Sec. 3.2.2.11] as

Sy = /S2 — (P2 +Q+2). (10)

It is not expressed in terms of the circuit parameters however.
Consequently, parameters of a reactive compensator cannot be
found by only having this power value. To find them, it has to
be known how the unbalanced power depends on the circuit pa-
rameters. As demonstrated in [31], the unbalanced power D,,,
defined by (5), provides fundamentals for reactive compensator
design, because it is expressed in terms of the circuit parameters.
It is enough to replace the load admittances in (6) by the com-
pensator admittances. To apply this idea of design of reactive
balancing compensators for four-wire systems, the power equa-
tion (4) and the unbalanced power definition have to be gener-
alized for systems with a neutral conductor.

II. POWER EQUATION

This paper is confined to studies on powers and reactive
compensation of linear, time-invariant (LTI) single-phase
loads supplied from three-phase sources with zero internal
impedance and sinusoidal, symmetrical voltage in four-wire



‘E;/DW{ Downloaded from http://iranpaper.ir

CZARNECKI AND HALEY: UNBALANCED POWER IN FOUR-WIRE SYSTEMS AND ITS REACTIVE COMPENSATION 55
“w o i P 0 w i f’]‘?{ %
O R 1 -2 N )—f\;r\‘ 23
Ug . iy ug R T efs o
S T «W j‘£var/ ) B 0
hug Is 5 I T 7 T _o T
\ T T & ’W' \‘] _{v'ar_ LOAD

Fig. 2. Loads in the four-wire system.
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Fig. 3. Equivalent load of the four-wire system.

systems. Loads can be connected to a neutral conductor or
supplied with line-to-line voltages as shown in Fig. 2. It is
assumed moreover that loads and supply lines are not mutually
coupled and are of zero impedance.

Symbols u and z in Figs. 1 and 2 denote three-phase vectors
of line-to-neutral voltages and line currents, namely

u® [up, us,ur]®, i 2 [ig,is, it]" (11)

and although these are vectors, they will be referred shortly to
as voltage and current. They can be expressed in terms of their
complex rms (crms) values, known commonly as “phasors™:

UxZUxeix, IxSIxe’™ Xe {R.S, T}
arranged in vectors

UL [Ur, Us, Up)T, 1€ I, b, 1r]T (12)

namely

u = V2Re{Ue’"}, i=V2Re{le?*'}. (13)
Digital signal processing of the voltage and current samples is
needed for presenting voltages and currents in such a form.

Any four-wire system, as shown in Fig. 2, has an equivalent
circuit, shown in Fig. 3 which, at the same supply voltage, u has
the same supply currents i and, consequently, the same active
and reactive powers P and () at the supply terminals.

Line-to-neutral admittances of the equivalent circuit can be
found by measurement of the active and reactive powers at the
load terminals, as shown in Fig. 4. Having these values, line-to-
neutral admittances are equal to

S
Yx =Gx+jBx = = = ,

Px —jx

X e {R,S,T}.
(14)

‘”l i[- \If -
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Fig. 4. Measurement of equivalent line-to-neutral admittances.

These admittances can also be calculated by measuring the
crms values of the supply voltages and currents

I
Y, =Gyt jBy = =

v (1s)

When equivalent line-to-neutral admittances are known, then
the vector of supply currents can be expressed as

[YrUR
YsUs 8‘7Wt

| YUt

.
Ys
Yo

i=v2Re

= v2Re CAPURe!™?

(16)

where

1P 81 o a]f a X geit20” or dye-i120” (17
denotes a unit three-phase vector of the positive sequence. Sim-
ilar vectors, but of negative and zero sequence, will be denoted
by 1" and 17, respectively
1€ e 0%, 17201 1 1T as)
With respect to the effectiveness of energy delivery in three-
phase systems, purely resistive balanced loads are the best loads.
Thus, let us extract a current of such a load from the supply
current. This would be the smallest current needed to supply
the load with active power P. To extract such a current, let us
observe that with respect to active power P, the load shown in
Fig. 4 is equivalent to a balanced resistive load, shown in Fig. 5,
on the condition that the load conductance G. is equal to

P

€ P —
O URHUI+UZ

(19

The active power of the original unbalanced load in Fig. 4, at
symmetrical supply, that is, such that

Ur = Us = Ur = U, thus |ju|| = V3U (20)
is equal to
P=Re{Y{+Y5+Y51U?
= (Gg + Gs + G1)U% 1)
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Fig. 5. Resistive balanced load equivalent to the original load with respect to
its active power I°.

Consequently, the active power of the balanced resistive load in
Fig. 4, with the load conductance

1
G = §(GR + Gs + GT) (22)

can be calculated as

P =Gellull*. (23)
Conductance G, will be referred to as an equivalent conduc-
tance of a load supplied from a four-wire line. Such a resistive
balanced load draws the current

ia(t) = Geu(t) = V2 Re{G U’}
= V2Re{G 1P Uge’*!} (24)
referred to as an active current of loads in four-wire systems.
It is defined similarly as in three-wire systems [28], only the
equivalent conductance G, is defined in a different way.

The presence of the reactive power ( is not associated with
the current asymmetry, but only with a phase shift between the
supply voltage and the load current. The supply source is loaded
with only the reactive power and, consequently, the reactive cur-
rent if a load is purely reactive and balanced. To extract the re-
active current from the load current, let us observe that with
respect to reactive power ¢}, the unbalanced load in Fig. 3 is
equivalent to a balanced purely reactive load of susceptance B,
shown in Fig. 6 on the condition that the load susceptance B, is
equal to

Q

B.=———=
/ UZ+UZ+UZ

(25)

The negative sign in this formula is a result of a convention
that inductive loads, which have negative susceptance B, have
positive reactive power (). Reactive power ) of the original
load is

Q=Im{Ys + Y5+ YL IUA = —(Bg + Bs + Br)U*?
= Bl (26)

Q

Be=——2_
T [l

1
= E(BR + Bg + BT) (27)
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Fig. 6. Reactive balanced load equivalent to the original load with respect to
its reactive power ().

will be referred to as the equivalent susceptance of loads sup-
plied from four-wire lines. Such a balanced reactive load draws
a reactive current

i = Bed(;:l)t)u = V2Re{jB.Uc’*!}

= V2Re{jB.1PUge™"}. (28)
The active and reactive currents are currents of balanced
loads and, consequently, they are symmetrical of the positive
sequence, while the supply current can be asymmetrical. Asym-
metry of the supply current occurs due to the load imbalance.
The asymmetrical component of the load current is equal to
Ty =1 — 1, — & (29)
and it can be expressed in terms of the load equivalent parame-
ters as follows:

-IRu
in = V2Re ! | Isy | e/t
_ITu
- (YR - Go - JBO) )
= V2Re{ | (Ys — Go — jB)o* | Ure™t § . (30)
| Y1 - G.—jBo)a

As shown in Appendix A, the current z, is, in general, an
asymmetrical current, composed of symmetrical components of
the negative and zero sequence

i, =it + i (31)
such that
i = V2Re{A"1 "Uge/*!} (32)
with
ndf 1 x
A" = g(YR+aYS + o YT) (33)
and
i = V2Re{A?1%Ure'*t} (34)
with
o df 1 *
A+ Y 5V +0a"Ys +a¥ 7). (35)
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Fig. 7. Diagram of the three-phase rms values of CPC.

In such a way, the current of an unbalanced load supplied from
a four-wire line was decomposed into four components, namely
=1, + 4 +i, +45. (36)

According to (36), the supply current can be decomposed into
components associated distinctively with specific phenomena in
the circuit, namely:

1) the active current ¢,, associated with a permanent flow of

energy at the rate of active power P;

2) the reactive current ¢,, associated with the phase shift be-
tween the voltage and current and, consequently, the pres-
ence of the reactive power Q;

3) the unbalanced current of the negative sequence
ciated with the load line-to-line imbalance;

4) the unbalanced current of the zero sequence ¢Z is associated
with the load line-to-neutral imbalance.

Therefore, these four currents can be regarded as the currents’
physical components (CPC) of the load current.

The authors of this paper would like to strongly emphasize,
however, that the adjective “physical” should not be interpreted
as a suggestion that these currents exist physically. They are
only mathematical entities, as observed in [37]. They are asso-
ciated with distinctive physical phenomena in the circuit how-
ever.

The three-phase rms values of these currents are equal to

n
s

asso-

[éal] = Gellu] (37
2]l = [Be|ll| (38)
[eall = A" [l (39)
25l = A"l (40)

Scalar products are defined for three-phase vectors #:(t) and y(t)
as

T

.y 2 [ & (i)

0

(41)

These four components, as shown in Appendix B, are equal to
zero, which means that they are mutually orthogonal. Conse-
quently, their three-phase rms values satisfy the relationship

4117 = lléall* + [l + llag ] + llat ). (42)

Fig. 8. Diagram of powers of the LTI load.

The relationship between three-phase value of these currents
can be illustrated with a diagram shown in Fig. 7.

Observe, however, that orthogonality of four currents cannot
be illustrated on a plane. This would be possible only in a 4-D
space. Only two sides can be drawn on a plane as orthogonal.
The sequence on the right side of (42) can be changed, how-
ever, and, consequently, the shape of the diagram, with the same
length of diagonal |¢||. The number of such diagrams is equal
to the factorial of four 4! = 24. To illustrate the orthogonality of
two selected quantities, they should be placed as the first terms
of (36).

Multiplying (42) by the square of the load voltage three-phase
rms value |||, the power equation is obtained

$* =P+ Q>+ D>+ D7’ (43)
with
P = |lul| |lga]] = Gellul® (44)
df R .

Q= & Jlull ll&]l = — Bellul® (45)
n 4f 11 n

Dy = lull Izl = A"|ul? (46)
2 df -y P :

D= lull flgg]l = A*[lul®. (47)

The power equation (43) is secondary to the current decom-
position (36) into physical components however. While current
physical components are associated with distinctive physical
phenomena, apart from the active power P, other powers are
only some measures that indicate how distinctive phenomena
contribute to the apparent power S increase above the P value.
All of them have an important feature: they are specified not
only in terms of the voltage and currents rms values, but also in
terms of equivalent parameters G, B, A*, and A* of the load.

Power equation (43) contains two new power quantities Dy,
and D% . They are associated with the presence of the negative-
and the zero-sequence unbalanced components in the supply
current. Therefore, they will be called negative-sequence un-
balanced power and zero-sequence unbalanced power, respec-
tively. The power equation can be illustrated geometrically with
a diagram shown in Fig. 8.

The sequence of powers in power equation (43) could be dif-
ferent and, consequently, the shape of the diagram. Similarly as
it was with currents, there are 4! = 24 different diagrams of the
load powers.
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Fig. 9. Equivalent circuit of the LTI load supplied from four-wire line with
symmetrical sinusoidal voltage.
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Fig. 10. Example of unbalanced load.

Observe, that the crms value of the negative-sequence com-
ponent z;, of the supply current in line S, according to (32), is

su = A'aUr = A"a"Us = (a"A") Us (48)
and in line T
I, = A"Us = AUt = (aA") U (49)

Similarly, the crms value of the zero-sequence component ¢, of
the current in line S, according to (34), is

f= AUp = AaUs = (0A)Us  (50)

and in line T

I, =AUr=A"a"Ur = (0"A")U7. (51)
Therefore, (24), (28), (32), and (34) specify current in a circuit,
which can be drawn as shown in Fig. 9. It will be referred to
as an equivalent circuit of LTI loads supplied from a three-wire
line with a neutral conductor.

Observe that the total unbalanced power D,, of the load can
be calculated from direct measurement of the active and reac-
tive powers P and () in the circuit shown in Fig. 4, and by cal-
culating the apparent power S, as defined by Buchholz with (3)
from rms values of the line currents and voltages measurements.
Having these three powers, the total unbalanced power can be
calculated, namely

Du - \/m

(52)
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It cannot be decomposed, however, into the negative- and
the zero-sequence unbalanced powers D} and D? without the
knowledge of the rms value of the negative- and zero-sequence
components of the load currents. The knowledge of all these
powers is not sufficient for designing a balancing compensator,
according to the method explained in Section IV however. As
will be shown, unbalanced admittances A", A*, and equivalent
susceptance B, of the load have to be known for that.

Illustration 1: Let us calculate the active, reactive, and both
unbalanced powers for the unbalanced load shown in Fig. 10,
assuming that Ur = 120 V.

For such a load, the equivalent admittance is equal to

Y.=G.+jB. = %(0.50 — j0.87 4+ 2.0) = 0.83 — j0.29S.
The negative-sequence unbalanced admittance is
A" = %(YR +aYg +a*Yr7)
= %(0.5 — jO.87 + Le 11207 x 0.5)
_ 0.3367120.10 q
while the zero-sequence unbalanced admittance has the value
A’ = %(YR +a"Ys +aYT)
— % (0.5 —j0.87 + 1631207 & 0.5)
=0.88¢ 710178,
Since
|ul| = V3UR = V3 x 120 = 207.8 V
the particular powers are equal to

P = Go|lu||* = 0.83 x (207.8)? = 36.0 kW

Q = —B.|jul|* = 0.29 x (207.8)? = 12.5 kvar
DY = A™|u||* = 0.33 x (207.8)* = 7.2 kVA
D7 = A™||lu|* = 0.88 x (207.8)% = 38.0 kVA.

III. POWER FACTOR

The power factor of LTI loads supplied with symmetrical si-
nusoidal voltage in three-phase systems with the neutral con-
ductor is equal to

P P

)\:—:
S PP+Q*+ D+ D7

(53)

thus, not only the reactive power (2, but also both unbalanced
powers D;; and D7, contribute to the load power factor degra-
dation. The power factor can be expressed not only in terms of
powers, but also in terms of three-phase rms values of CPCs of

the supply current, namely

_P [l _ Jia]
SR Y P EEA A e FH R A L
(54)
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(M i The compensator In Fig. 11 is composed of three reactive
. Ge devices of susceptance Tx, 75, and 7Trr. It is assumed here that
= B these devices are lossless, meaning their conductance G is equal
T - — A" to zero.
i3 |!7r} I!E !‘E— i\ A7 The negative-sequence component ., of the unbalanced cur-

Reactive compensator Load

Fig. 11. LTI load with reactive compensator in Y structure.
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Fig. 12. General structure of the reactive balancing compensator.

Particularly important is the possibility of expressing the
power factor in terms of the load parameters, especially, in
terms of the equivalent conductance (., susceptance, B., and
the magnitude of unbalanced admittances A™ and A*

_ il _ G

A=l = :
el G2+ B2 4 A2+ A7

(55)

Thus, the power factor of loads supplied from a four-wire line
declines from unity value because of nonzero equivalent sus-
ceptance B, of the load, the negative-sequence unbalanced ad-
mittance A", and the zero-sequence unbalanced admittance A”.
This last formula emphasizes the fact that the power factor de-
pends only on the load properties, but not on voltages, cur-
rents, or powers. It is defined in terms of the active and ap-
parent powers, but eventually, only the load properties specify
the power factor value. Also, in a case of reactive compensation,
only a change by means of such a compensator of the parame-
ters as seen by the supply makes the power factor improvement
possible.

The power equation developed in this section is valid at sym-
metrical sinusoidal voltage, which supplies an unbalanced, but
linear time-invariant load. The development of this equation
will not terminate studies on this subject. New ideas will occur
as, for example, discussed in [34]. Nonetheless, as presented in
this paper, the CPC approach seems to be very fruitful and opens
a gate to studies on powers in three-phase systems in situations
more complex than those considered in this paper.

IV. REACTIVE COMPENSATION

A reactive compensator can be built, in general, of three in-
ductors and/or capacitors connected between supply lines and
the neutral conductor, meaning in Y structure or connected be-
tween supply lines, meaning in A structure. Since compensators
in A structure cannot affect the neutral current, let us focus our
attention on reactive compensators in Y structure, as shown in
Fig. 11.

rent is compensated entirely on the condition that

1
5j(TR +aTls +a*Tr)+ A" =0

while the zero-sequence component 4, of this current is entirely
compensated on the condition that

(56)

%j(TR—I—a* Ts +aTlr)+ A" =0. 57
If, along with the unbalanced current, such a compensator
should also compensate the reactive current, then its parameters
should moreover satisfy condition

1

3
Equations (56) and (57) have to be satisfied for the real part
and for imaginary parts of these equations separately; thus, each
of them represents two equations. Thus, three susceptances Tg,
Ty, and Tr of the compensator have to satisfy five equations,
meaning the set of these equations is contradictory. A compen-
sator of structure as shown in Fig. 11 cannot compensate simul-
taneously the reactive and unbalanced currents. Even the unbal-
anced current alone cannot be compensated, because (56) and
(57) with only three unknown parameters are contradictory. A
second compensator is needed for compensation of the unbal-
anced and reactive currents. In general, the compensator could
have the structure as shown in Fig. 12 is composed of a com-
pensator in the Y configuration and a compensator in the A
configuration. The sequence of A and Y compensators can be
switched, which changes the compensator structure. Moreover,
the reactive current can be compensated entirely by A, by Y
the compensator or even by both of them. Thus, the load can
be compensated by reactive compensators of different structure
and parameters.

Since procedures of calculation of their parameters do not
differ substantially, only one of them will be considered in this
paper.

Let us assume that in the first step of compensation the reac-
tive current z,, and the unbalanced current of the zero sequence
t;, are compensated by a compensator of Y structure, connected
as shown in Fig. 12. Its susceptances have to satisfy (57) and
(58). The solution of these equations results in the compensator
parameters

(T + 75 + Tr)+ B. = 0. (58)

Tr = —21ImA* — B,
Ty = —V3ReA” + ImA” — B,

Tr = V3ReA” + ImA* — B,. (59)

The zero-sequence unbalanced admittance of such a compen-
sator is equal to A, = —A”. Let us calculate the negative-se-
quence admittance of this compensator, i.e.,

L. *
Af gj(TR—l—(JéTS—i-O[ Tr)

1
= gj[(f2ImAZ - B.)
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Fig. 13. Unbalanced load.

+ a(—V3ReA” + ImA* — B.)

+ a*(V3ReA” + ImA” — B,)]
=ReA” — jImA” = A" . (60)
Thus, such a compensator reduces the zero-sequence compo-
nent 2 of the unbalanced current to zero, but changes the neg-
ative-sequence component i, to

in = V2Re {(A} + A") 1"Upe/™'} =
V2Re{ A1 "Uge’*}. (61)
It means, that the load with the compensator of the Y structure
has unbalanced admittance of the negative sequence equal to
A" = AL 4+ A" = A" + A" (62)
According to [30], the unbalanced admittance of a load con-
figured in A is equal to

A" = —(Ysr + oY 1R + o Ygs). (63)

Applying this formula to a reactive compensator and assuming
that one of the admittances, for example Y rg, is equal to zero,
susceptances Tg and Trr should satisfy equation

—(jTst + ajTrr + «*jTrs) + A =0 (64)

along with the condition that the compensator equivalent sus-
ceptance

Beo=Tp+Ts + 17 =0 (65)
because the reactive power of the load is compensated by the Y
structure compensator. Equations (64) and (65) have solution

Trs = (V3Re A™ — Im A™)/3
Tst = (2Im A™)/3
Trr = (—V3ReA™ — Im A™)/3. (66)

In effect of such compensation, the load supplied from a
three-wire line with neutral conductor is balanced with the
reactive power equal to zero, thus it operates at unity power
factor A. The compensated load is equivalent to a purely resis-
tive balanced three-phase load of conductance, per phase, equal
to the equivalent conductance G..

Illustration 2: Let us calculate parameters of a reactive com-
pensator for a load shown in Fig. 13 and supply currents, as-
suming that the supply voltage rms value is equal to U = 120V
and w = 1 rad/s.
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Fig. 14. Example of the load with the reactive compensator.
The equivalent admittance of the load is equal to
Y—G+"B—1(Y +Y —I—Y)—1 L
c — ¢ JDe = 3 R S T)— 31 +J1
= 0.167 — j0.167 S
while the unbalanced admittances are
1 1 1 1
A" = -(Y 'Y FY )= —a"YT = o
gYrta¥s +a’¥r)=g0¥r =gat
= 0.236¢ 91657 = _0.228 — j0.061 S
A" 1(Y +a"Ys +a¥Y7) L Y L 1
== Q o = - = -«
3V R s R A |

— 0.236¢7™7 = 0.061 + j0.228 S.
Since the three-phase rms value of the supply voltage is
|u| = VBUr = V3 x 120 =207.8V
the rms values of the CPC of the considered load are equal to

[#a]] = Ge|lul| = 0.167 x 207.8 = 34.7 A
lie|| = [Bel [J]l = 0.167 x 207.8 = 34.7 A
8] = A™|Juef) = 0.236 x 207.8 = 49.0 A
4%]| = A%||ul| = 0.236 x 207.8 = 49.0 A.

The rms value of the load current is

il = V&all? + ]| + (12512 + [l ]1? = 84.9 A

and the power factor

Pl

= 0.4L.
s |l

Susceptances of the compensator of the zero-sequence unbal-
anced and reactive currents, configured in Y, and connected as
shown in Fig. 14, have values

TR = —2Im A” — B, = —0.289 S
Ts = —V3Re A + Im A* — B, = 0.289 S
Tr = V3Re A” + Tm A* — B. = 0.50 S.

The crms values of the line currents after compensation with
the Y compensator are equal to

Ig = 34.64e 7797 A I = 34.64¢ 737 A I1 = 60.0¢7120° A
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The compensator changes the unbalanced admittance of the
load and the Y-configured compensator to

A" = A% + A" = (0.061 + j0.228)* — 0.228 — j0.061
= —0.167 — j0.289 S

thus, susceptances of the A compensator are equal to

Trs = (V3RcA™ —Im A™)/3 =0
Tst = (2Im A™)/3 = —0.192 S
(—V3ReA™ — Im A™)/3 = 0.192 S.

Trr

The A compensator should be composed of an inductor of in-
ductance

1
LeT = — =5.19H
St wilsr
and a capacitor of capacitance
T
Crp = —% =0.192F
w1

The results of compensation are shown in Fig. 14. The compen-
sator eliminates the reactive and unbalanced components from
the supply current, meaning it improves the power factor to
unity.

V. CONCLUSIONS

Reactive compensation in three-phase systems with a neu-
tral conductor is more complex than such compensation in
three-wire systems. The number of the compensator’s reac-
tive components required for total compensation can even
double. Nonetheless, reactive current can always be totally
compensated, and the load can be fully balanced for any linear,
time-invariant unbalanced load supplied with a symmetrical
and sinusoidal voltage.

This paper presents fundamentals of reactive compensation
of linear loads with fixed parameters. Usually, these parame-
ters change in time however. An adaptive compensator might
be needed for such a situation. The fundamentals of design of an
adaptive compensator of reactive power with thyristor-switched
inductors (TSI) were presented in [35]. Design and control of
an adaptive balancing compensator for three-wire systems were
presented in [36]. The last paper discusses adaptive reactive
compensation in three-wire systems, but the same approach and
technology can be applied to adaptive compensation in four-
wire systems. The discussion of such an adaptive compensation
is beyond of the scope of this paper however. The same applies
to compensation in the presence of supply voltage harmonics
and/or the supply voltage asymmetry. Nonetheless, this paper
could be regarded as a starting point for studies on compensa-
tion in more complex situations.

APPENDIX A
SYMMETRICAL COMPONENTS OF UNBALANCED CURRENT

The unbalanced current ¢,,, as defined by (30), can be decom-
posed into symmetrical components of the positive, negative,
and the zero sequence.

The crms value of the positive sequence of this current is
equal to

1

IE = §(IR11 + aISu + OC*ITH)
1
§[(YR —Go—jB)+a(Ys — G, — jBo)a*

+ Oz*(YT — Ge — jBe)Ol]UR

1
= §KYR +Ys +Yr1)—3G.— j3B.JUgr =0.

(A1)

Thus, the unbalanced current does not contain any component
of the positive sequence.

The crms value of the negative-sequence component of the
unbalanced current is equal to

1
IE = g(IRu —+ Ué*ISu + ()LITH)
1
= 5[(YR —Ge— jB)+a*(Ys — Go — jBo)a*
+a(Yr — G, — jBe)a|Ug
1 -
= ;(Yr+0oY¥s +a"Yr)Ux ¥ arug (A2)
where
ar 1
Ar Y 5(YR +aYs +a*Yr). (A3)

The crms value of the zero-sequence component of the un-
balanced current is equal to

1
IIZI = §(IR11 ‘I’ISU +IT11)

1 ) ) .
= 5[(YR - Ge - ]Be) + (YS - Ge - ]Be)Oé
+ (Y1 —-G.—jBo)a]Ur

1
= 5(Yr +0a"Ys +a¥1)Ux 4 AUR (Ad)
where
1
A E s(YR+a"Ys +a¥y). (A5)
APPENDIX B
ORTHOGONALITY OF CPCs
The three-phase rms value of vector £(#) is defined as
1 1z

R ERCEC (B1)

0
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hence, the three-phase rms value of a sum of three-phase vectors
z(t) and y(¢) is equal to

oyl = | 7 [ () + 9] falh) + y(eae
0
= VP2, )+ ol (B2)
where
(. 9) 2 [ o)y dr (B3)

0

denotes the scalar product of three-phase quantities %(¢) and
y(t).

According to (B2), the three-phase rms value of a sum of
three-phase vectors #(¢) and y(%) can be calculated as a root
of the sum of squares of the rms values of individual vectors,
meaning
1> + [ly/I*

=+l = (B4)

only if the scalar product of these vectors is equal to zero, i.e.,
(.’II, y) =0

meaning if they are mutually orthogonal.
When three-phase quantities are expressed in terms of their
crms values, namely

T = V2Re{Xc'*!}, gy = 2Re{YcI*}

then their scalar product is equal to

(z,9) = =

M|

7
/ z(t)Ty(t) dt
0

2 o
=7 /RC{XTe-wt}Rc{Yewt} dt

0
=ReX 'ReY + ImX ImY = Re{X" Y*}.

(B3)

Let us calculate scalar products of three-phase quantities of
a positive sequence zP(¢), of negative sequence y"(¢) and zero
sequence w?(t)

zP(t) = V2Re{1P X gel*?}
y*(t) = V2Re{1"Y e’}
w'(t) = V2Re{1? Wge''}.

These scalar products are equal to, respectively

(", y") = Re {(1P" XR)(1"YR)"}
= Re{lpTln*XRYE}
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1
=Re{ [1,0", q] [a*-‘ XrY}
o)
=Re{[l+ a+ «"|XgrYR} =0. (B6)
(P, w”") = Re {(1 PTXR)(1” WR)*}
=Re{1PT1% Xy W3}
1
[1,a" o] |1
1
=Re{[l+a" +a]XgWy} =0.

=Re XpWh

(B7)

(v ") = Re{(1"T¥ 5)(1* Wr)"}
=Re{1"M1% YRW5}

1

10,0 |1

1

=Re{[l+a+ «"]YgW5} =0.

=Re YW

(B8)

Thus, three-phase symmetrical quantities of different sequences
are mutually orthogonal.
In the current decomposition
i =1y + %+, + 15 (B9)
the active and reactive currents are of positive sequence, thus

they are orthogonal to both unbalanced currents. Let us check
the orthogonality of the active and reactive currents

(3a,4,) = Re{(Go1PUg)(jB1PUR)"}
— Re {1 TP (ijCGCUE{)}
1

[l,a" o] | «

a*

= Re {3 (-iB.GUE)} = 0.

= Re (—iB.G.UR)

(B10)

It means that scalar products of all components in decompo-
sition (B9)

(iav ir)a (":aa iﬁ) s (iaa ZIZJ) ’ (irv ZE) ; (ir'/ 'Li) : ("E* 1121)

are equal to zero; thus, these components are mutually
orthogonal.

REFERENCES

[1] F. de Leon and J. Cohen, “AC power theory from poynting theorem:
Accurate identification of instantaneous power components in non-
linear-switched circuits,” IEEE Trans. Power Del., vol. 25, no. 4, pp.
2104-2112, Oct. 2010.

[2] W. G. Morsi and M. E. El-Hawary, “Defining power components
in nonsinusoidal unbalanced polyphase systems: The issues,” IEEE
Trans. Power Del., vol. 22, no. 4, pp. 2428-2437, Oct. 2007.

[3] F. de Leon and J. Cohen, “A practical approach to power factor defini-
tions: Transmission losses, reactive power compensation, and machine
utilization,” presented at the Power Eng. Soc. Meet., Montreal, QC,
Canada, 2006.

[4] F. Ghassemi, “New concept in AC power theory,” IET Gen. Transm.,
Distrib., vol. 147, no. 6, pp. 414-424, 2000.



“QPW{ Downloaded from http://iranpaper.ir

[5] F. Ghassemi, “What is wrong with power theory and how it should be
modified,” in Proc. Meter. Tariffs Energy Supply Conf., pp. 109—114.

[6] Z.Hanzelka and Y. Varetsky, “Negative-sequence active power stream
as an index of unbalanced source,” presented at the Elect. Power Qual.
Utiliz. Conf., Lisbon, Portugal.

[7] M. A. S. Masoum, P. S. Moses, and A. S. Masoum, “Derating of
asymmetrical three-phase transformers serving unbalanced nonlinear
loads,” IEEE Trans. Power Del., vol. 23, no. 4, pp. 2033-2041, Oct.
2008.

[8] H. Akagi, Y. Kanazawa, and A. Nabae, “Instantaneous reactive power
compensator comprising switching devices without energy storage
components,” IEEE Trans. Ind. Appl., vol. IA-20, no. 3, pp. 625-630,
May 1984.

[9] H. L. Ginn and G. Chen, “Switching compensator control strategy
based on CPC power theory,” Przeglad Elektrotech., vol. 84, no. 6,
pp. 23-27, 2008.

[10] L. F. C. Monteiro, J. L. Alfonso, J. G. Pinto, E. H. Watanabe, M.
Aredes, and H. Akagi, “Compensation algorithms based on the p-q
and CPC theories for switching compensators in micro-grids,” in Proc.
Power Electron. Conf., 2009, pp. 32-40.

[11] P. Tenti, D. Trombetti, E. Tedeschi, and P. Mattavelli, “Compensation
of load unbalance, reactive power and harmonic distortion by coopera-
tive operation of distributed compensators,” in Proc. Eur. Conf. Power
Electron. Appl., 2009, pp. 1-10.

[12] M. Popescu, A. Bitoleanu, and V. Suru, “Currents’ physical compo-
nents theory implementation in shunt active power filtering for un-
balanced loads,” presented at the Int. School Nonsinusoidal Currents
Compensation, Zielona Gora, Poland, 2013.

[13] Ch. P. Steinmetz, Theory and Calculation of Electrical Apparatur.
New York, USA: McGraw-Hill, 1917.

[14] W. V. Lyon, “Reactive power and unbalanced circuits,” Elect. World,
pp. 1417-1420, Jun. 1920.

[15] “AIEE Committee Apparent power in three-phase systems,” Trans.
AIEE, vol. 39, pp. 1450-1455, 1920.

[16] F. Buchholz, “Die drehstrom-scheinleistung bei unglaichmaBiger Be-
lastung der drei Zweige,” Licht Kraft, pp. 9-11, Jan. 1922.

[17] H. L. Curtis and F. B. Silsbee, “Definitions of power and related quan-
tities,” Trans. AIEE, vol. 54, pp. 394-404, 1935.

[18] L. S. Czarnecki, “Energy flow and power phenomena in electrical cir-
cuits: Illusions and reality,” Archiv Fur Elektrot., vol. 82, no. 4, pp.
10-15, 1999.

[19] M. Grandpierr and B. Trannoy, “A stationary power device to rebalance
and compensate reactive power in three-phase network,” in Proc Ind.
Appl. Soc. Annu. Conf., 1977, pp. 127-135.

[20] G. Klinger, “LC Kompensation und symmetirung fur Mehrphasensys-
teme mit belibigen Spanungdverlauf,” ETZ Archiv, pp. 57-61, 1979.

[21] J. E. Miller, Reactive Power Control in Electric Systems. New York:
Wiley, 1982.

[22] L. S. Czarnecki, “Minimization of unbalanced currents in three-phase
asymmetrical circuits with nonsinusoidal voltage,” in Proc. Inst. Elect.
Eng., B, 1992, vol. 139, no. 4, pp. 347-354.

[23] S. Y. Lee and C. J. Wu, “On-line reactive power compensation
schemes for unbalanced three-phase four wire distribution systems,”
IEEE Trans. Power Del., vol. 8, no. 4, pp. 1235-1239, Oct. 1993.

[24] L. S. Czarnecki, “Supply and loading quality improvement in sinu-
soidal power systems with unbalanced loads supplied with asymmet-
rical voltage,” Archiv Elektrotech., vol. 77, pp. 169177, 1994.

[25] L. C. Oriega, De. Oliviera, M. C. Barros Neto, and J. B. de Souza,
“Load compen-sation in four-wire electrical power systems,” in Proc.
Int. Conf. Power Syst. Technol., 2000, vol. 3, pp. 1975-1580.

[26] L. Sainz, M. Caro, and E. Caro, “Analytical study of series resonance
in power systems with the Steinmetz circuit,” IEEE Trans. Power Del.,
vol. 24, no. 4, pp. 2090-2099, Oct. 2009.

[27] D. Mayer and P. Kropik, “New approach to symmetrization of three-
phase networks,” Int. J. Elect. Eng., vol. 56, no. 5-6, pp. 156-161,
2005.

[28] C. Arendse and G. Atkinson-Hope, “Design of Steinmetz symmetrizer
and application in unbalanced network,” presented at the UPEC Conf.,
Cardiff, Wales, U.K., 2010.

CZARNECKI AND HALEY: UNBALANCED POWER IN FOUR-WIRE SYSTEMS AND ITS REACTIVE COMPENSATION 63

[29] S.-J. Jeon and J. L. Willens, “Reactive power compensation in multi-
line systems under sinusoidal unbalanced conditions,” Int. J. Circuit
Theory Appl., vol. 39, pp. 211-224, 2011.

[30] L. S. Czarnecki, “Orthogonal decomposition of the currents in a
three-phase nonlinear asymmetrical circuit with a nonsinusoidal
voltage source,” IEEE Trans. Instrum Meas., vol. 37, no. 1, pp. 30-34,
Mar. 1988.

[31] L. S. Czarnecki, “Reactive and unbalanced currents compensation in
three-phase circuits under nonsinusoidal conditions,” IEEE Trans. In-
strum. Meas., vol. IM-38, no. 3, pp. 754—459, Jun. 1989.

[32] IEEE Trial Use Standard for the Measurement of Electric Power
Quantities Under Sinusoidal, Nonsinusoidal, Balanced and Unbal-
anced Conditions, IEEE Standard 1459-2000.

[33] IEEE Standard Definitions for the Measurement of Electric Power
Quantities Under Sinusoidal, Nonsinusoidal, Balanced and Unbal-
anced Conditions, IEEE Standard 1459-2010.

[34] M. Castro-Nunez and R. Castro-Puche, “The IEEE Standard 1459, the
CPC power theory and geometric algebra in circuits with nonsinusoidal
sources and linear loads,” IEEE Trans. Circuits Syst. I, Reg. Papers,
vol. 59, no. 12, pp. 2980-2990, Dec. 2012.

[35] L. Gyugyi, R. A. Otto, and T. H. Putman, “Principles and applications
of stationary thyristor-controlled shunt compensators,” IEEE Trans.
Power App. Syst., vol. PAS-97, no. 5, pp. 1935-1945, Sep. 1978.

[36] L. S. Czarnecki, S. M. Hsu, and G. Chen, “Adaptive balancing com-
pensator,” I[EEE Trans. Pow. Del., vol. 10, no. 3, pp. 1663—1669, Jul.
1996.

[37] F. de Leon and J. Cohen, “Discussion of instantaneous reactive power
p-q theory and power properties of three-phase systems,” /EEE Trans.
Power Del., vol. 23, no. 3, pp. 1693-1694, Jul. 2008.

Leszek S. Czarnecki (F’96-LF’13) received the
M.Sc. and Ph.D. degrees in electrical engineering
and Habil. Ph.D. degree from Silesian University
of Technology, Gliwice, Poland, in 1963, 1969, and
1984, respectively.

He was with Silesian University of Technolog as
an Assistant Professor. Beginning in 1984, he worked
for two years at the Power Engineering Section, Di-
vision of Electrical Engineering, National Research
Council (NRC) of Canada as a Research Officer. In
1987, he joined the Electrical Engineering Depart-
ment, Zielona Gora University of Technology, Zielona Gora, Poland. In 1989,
he joined the Electrical and Computer Engineering Department at Louisiana
State University, Baton Rouge, where he currently is a Professor of electrical
engineering and Alfredo M. Lopez Distinguished Professor. His research inter-
ests include network analysis and synthesis, power phenomena in nonsinusoidal
systems, compensation, and supply quality improvement in such systems.

Dr. Czarnecki was elected to the grade of Fellow IEEE in 1996 for developing
a power theory of three-phase nonsinusoidal unbalanced systems and methods
of compensation of such systems. He was decorated by the President of Poland
with the Knight Cross of the Medal of Merit of the Republic of Poland for the
contribution in the United States to Poland acceptance in NATO.

Paul M. Haley (S’13) was born in Anchorage, AK.
He received the M.S. degree in electrical engineering
from Louisiana State University, Baton Rouge, LA,
USA, in 2012, where he is currently pursuing the
Ph.D. degree in electrical engineering.

He is a recipient of the Louisiana Board of Re-
gents Fellowship. His current research interests in-
clude power theory and compensation in power sys-
tems with asymmetrical and distorted voltages and
currents.



