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Abstract—Wind generator (WG) output is a function of wind
speed and three-phase terminal voltage. Distribution systems are
predominantly unbalanced. A WG model that is purely a func-
tion of wind speed is simple to use with unbalanced three-phase
power flow analysis but the solution is inaccurate. These errors add
up and become pronounced when a single three-phase feeder con-
nects several WGs. Complete nonlinear three-phase WG models
are accurate but are slow and unsuitable for power flow applica-
tions. This paper proposes artificial neural network (ANN) models
to represent type-3 doubly-fed induction generator and type-4 per-
manent magnet synchronous generator. The proposed approach
can be readily applied to any other type of WGs. The main ad-
vantages of these ANN models are their mathematical simplicity,
high accuracy with unbalanced systems and computational speed.
Thesemodels were tested with the IEEE 37-bus test system. The re-
sults show that the ANNWGmodels are computationally ten times
faster than nonlinear accurate models. In addition, simplicity of
the proposed ANN WG models allow easy integration into com-
mercial software packages such as PSS®E and PSS®SINCAL and
implementations are also shown in this paper.

Index Terms—Artificial neural networks, power distribution
systems, power flow, wind power generators.
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Rotor mechanical power.

Area swept by the turbine.

Density of air.

Wind speed (m/s).

Power coefficient.

Tip speed ratio.

Constants.

Blade pitch angle.

Turbine angular speed.
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Rotor angular speed.

Radius of the turbine.

Gear box coefficient.

Three-phase WG real power output.

Three-phase WG reactive power
output.

Magnitudes of three-phase voltage
at PCC.

Angles of three-phase voltage at
PCC.

Three-phase voltage at PCC.

Real and reactive power supply
from stator to PCC.

Stator power at different
symmetrical component networks.

Stator winding current phasors at
different symmetrical component
networks.

Symmetrical component stator
winding impedances.

Stator voltage phasors at different
symmetrical component networks.

Rotor power at different
symmetrical component networks.

Rotor winding current phasors at
different symmetrical component
networks.

Symmetrical component rotor
winding impedances.

Rotor voltage phasors at different
symmetrical component networks.

Real and reactive power supply
form grid side converter to PCC.

Induced emf phasors at different
symmetrical component networks.

Converted symmetrical component
slip.

Machine slip.
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Symmetrical component
magnetizing reactance with
respect to stator of the machine.

Magnetizing reactance with respect
to stator of the machine.

Index to denote the symmetrical
component network.

Stator and rotor copper losses in
sequence networks.

Derivative of the error power.

Sigmoid activation function.

Net-stimulus.

Output layer of the neural network.

Index to specify the neurons.

Index to specify the layer.

Normalized output of a neuron.

Normalized target output of a
neuron.

Non-normalized output of a neuron.

Non-normalized target output of a
neuron.

Weights of links.

Leaning rate.

Maximum absolute error.

Average absolute error.

Number of epochs.

Number of output neurons in the
output layer.

Average root mean square error.

Index to specify epochs.

I. INTRODUCTION

E NVIRONMENTAL awareness has triggered a number of
government programs to harness green energy. Different

forms of the feed-in-tariff (FIT) programs exist in many coun-
tries to provide financial incentives for stimulating widespread
installation of renewable generators. As a result, a large number
of wind generators (WGs) are being connected to distribution
systems (DSs). Unique characteristics of DSs (as opposed to
transmission systems) are 1) their radial or weakly meshed con-
figuration, 2) unbalanced lines and loads, and 3) their high R/X
ratio [1], [2], [4], [5]. Therefore DS power flow studies are car-
ried out considering the three-phase system. All network com-
ponents have to be modeled accurately considering unbalanced
three-phase system.

A. Power Flow Analysis With Wind Generators

The simplistic PQ modeling approach was shown to be
satisfactory in representing WGs when a very few of them of
small sizes were connected to a DS and the DS is balanced
three-phase system. Hence simple (inaccurate) representation
of WGs using PQ values, as a function of wind speed without
accounting voltage unbalances at the point of connection with
DS, did not significantly influence power flow analysis results
of DSs. Therefore, it was common that the outputs of WGs
were assumed constant for a given wind speed. Even though
the output power of WG depends on the voltage at point of
common coupling (PCC), in most power flow studies, WGs
were modeled as simple fixed power injections (independent
from the terminal voltage) and purely a function of wind speed
[2], [3].
With increased proliferation of several large sized WGs in

DSs with many on the same feeder, numerous instances are
found where WGs comprise the major portion of power flow
in the DS and at times causing reverse power flow from DS into
the transmission system (TS). This simple (inaccurate) repre-
sentation of WGs using PQ values, as a function of wind speed,
is inadequate to provide accurate results for distribution system
analysis when several and larger machines are connected and
the DS is considerably unbalanced. In such cases, accurate mod-
eling of WGs becomes a must for accurate power flow anal-
ysis of DSs. Therefore, it is important to model unbalanced
three-phase DS voltage at PCC and ensure that the WG model
properly accounts for the unbalanced supply. In [4]–[17] dif-
ferent accurate WG models discuss the steady state behavior of
WGs.
Hence, it is imperative that WGs be accurately modeled con-

sidering both wind speed and three-phase supply voltage pha-
sors for accurate three-phase power flow analysis of DSs. A flow
chart for themodified ladder iterative power flow algorithmwith
an accurate WG model is shown in Fig. 1.

B. Effect of Voltage Deviation

Further, it may be noted that converters of wind generators try
to operate the machines such that they extract maximum power
from the wind. Barring some losses, this power shall appear
at the PCC as the sum of powers flowing from three phases.
When the three-phase voltage at PCC is balanced and at rated
value, the per phase power outputs are equal and equal to the
rated power value. However, when the voltagemagnitude drops,
the phase currents increase and thus the total power loss in the
WG also increases. Due to this effect, drop in the PCC voltage
magnitude reduces the total power supply to the PCC.
Further, unbalanced PCC voltage (voltage angle deviations)

causes, per phase power output to be unequal, while, the sum
of per phase power to be equal to the mechanical power input
from the wind turbine. These unequal power flows from theWG
causes voltage regulation issues on the DS lines. An example of
the extent of imbalance in phase power with angle imbalance is
shown in Table I considering WG [16].
Reviewing the unbalanced case in Table I, it is obvious that

representing WGs using balanced PQ values as a function of
wind speed without accounting voltage unbalances at the point
of connection with DS is highly inaccurate.
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Fig. 1. Block diagram showing the Ladder Iterative Technique power flow al-
gorithm with WG [21].

TABLE I
POWER OUTPUT VARIATIONS FOR DIFFERENT PCC VOLTAGES

Further, these deviations (between rated and actual) are
compounded in long feeders with several WGs. This is the
typical case in Northern Ontario, Canada. Therefore it is im-
portant to accurately model WGs considering the three phases
accounting for their power output relationship to three-phase
system voltage at PCC and wind speed.

C. Wind Generator Modeling

In [4]–[7], buses with WGs were modeled as constant power,
constant power factor, or constant voltage nodes with required
modifications to capture the characteristics of the WGs. The
authors of [8]–[17] model the WG by cascading the turbine,
the induction/synchronous generator and the power converter
models. The nonlinear relationship between wind velocity and
power output of turbines was used in these WG models. In [16]
and [17], the authors developed nonlinear models for the DFIG
and the PMSG WGs respectively by modeling each WG com-
ponent. These two models have a three-phase representation of
WG that consider unbalanced DS voltage at PCC and mutual
admittances.
There are four main types of WGs. Two of them, namely the

Type-3 doubly-fed induction generator (referred to as the DFIG)
and the Type-4 full capacity converter connected permanent

Fig. 2. Equivalent circuit diagram of doubly-fed induction generator—com-
plete model.

magnet synchronous generator (PMSG) have become popular
due to their characteristics. In industry, both synchronous ma-
chines and induction machines are used for Type-4WGs. Power
output of these WGs is a function of wind speed and voltage at
PCC. Research on this subject reveals that estimating the power
output of a WG requires knowledge of seven parameters: the
wind velocity, and the three WG terminal voltage magnitudes
and respective phase angles. The relationship between these pa-
rameters and the WG output power are highly nonlinear, as ex-
plained in [8]–[17].
The block diagram of the type-3 DFIGWG’s nonlinear model

[16] is shown in Fig. 2. The mathematical model for type-3
DFIGWG is given in Appendix A. A complete model for type-4
PMSG is given in [17]. The complete nonlinear mathematical
model of any type ofWG can be represented as below using ma-
trix equations where three-phase PCC voltage and wind speed
are related to net real and reactive power injections from the
WG into the connected bus (A23):

(1)

Here F is a multidimensional matrix equation comprising a set
of nonlinear equations.
Generally these models (1) are nonlinear due to the nature

of the machine. Therefore, Newton-Raphson technique is pop-
ularly used to solve these models. It is an iterative technique and
needs to be solved for each connectedWG in DS in every power
flow iteration (Fig. 1). Therefore, these nonlinear WG models,
when integrated in power flow algorithms, result in slow con-
vergence, considerably slowing down the power flow solution
[12]. Furthermore, industries and utilities use commercial soft-
ware such as PSS®E and/or PSS®SINCAL where integration
of such iterative solution of nonlinear models is not possible.

D. Proposed Work

To overcome the challenge of higher computational effort,
solution time and difficulty to incorporate them readily to com-
mercial software, the use of artificial neural network (ANN)
to model WG is proposed in this paper. The use of ANN in
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wind power is not new but in most cases ANN is deployed
for forecasting wind power [18]. In such studies econometric
models are replaced by ANNs. However, this paper proposes
three-phase WGmodels using ANN to replace the existing non-
linear WG models. The proposed ANN models for WGs emu-
late (1), the nonlinear three-phaseWGmodels that are functions
of wind speed and three-phase PCC voltage (1).
In contrast to the nonlinear models, ANN models develop an

empirical mapping of the input-output relationship using a given
input-output data (Epochs) set. If the accurate nonlinear model
for a WG is available, it can be used for generating epochs or
otherwise metered data of a WG can be used as epochs. This as-
pect of using metered data for modeling a WG is a huge benefit
of the proposed method. The process of generating epochs and
building ANN WG models are explained in detail in the fol-
lowing sections of this paper. The proposed ANN models are
computationally much faster than the corresponding nonlinear
WG models, and can be easily extended for modeling wind
farms by accounting several wind speeds. This means ANN ap-
proach provides a universal WG modeling technique which can
be used to model any type or size of WG or wind farms. In ad-
dition the proposed ANN WG model reduces the convergence
time of DS power flow studies while maintaining accuracy. Fur-
ther, if there are several wind generators or farms in the system,
as the case might be in a transmission system, the computational
benefits are significant. The other advantage of the proposed
ANN WG model is that it can be easily implemented in com-
mercial software packages such as PSS®E and PSS®SINCAL
irrespective of size/type of the WG because they use linear ma-
trix relationships.
Through the ANN model developed in this paper maps non-

linear WGmodels of type-3 DFIG and type-4 PMSG developed
in [16] and [17], respectively, the proposed ANN WG model is
equally suitable to replace any other nonlinear wind generator
model.
The paper is organized as follows. Section II provides a

brief introduction to ANNs. In Section III, ANN WG models
for type-3 DFIG and type-4 PMSG are developed and in
Section IV they are tested on a three-phase DS power flow
program. Section V provides a case study where ANN WG
models were implemented in PSS®E and PSS®SINCAL.
Section VI concludes the paper.

II. ARTIFICIAL NEURAL NETWORK APPROACH

A typical feed-forward neural network model (back propa-
gation network—BPN) is used to model WGs in this paper.
Sample architecture is shown in Fig. 3.
In this work, k is used as a notation for the kth layer of an

ANN. There can be neurons in any hidden layer. The number
of neurons in the input and output layers are determined by the
number of input and output variables of the WG’s nonlinear
model (1). The number of hidden layers and the number of neu-
rons in each hidden layer are determined by experimenting with
available data set. This experimentation process and the selec-
tion criterion are explained at the end of this section. A neuron
is formed by one or more inputs, a functional element and an
output. Fig. 4 shows a neuron and its notation as employed in
this paper.

Fig. 3. Generic ANN architecture.

Fig. 4. Neuron and its notation in an ANN model.

The back propagation network (BPN) algorithm is explained
in Appendix B [19] and it was used for the ANN WG models
developed in this paper. In this notation, represents
the weight of the link between the ith neuron in th layer
and the jth neuron in kth layer. The variable repre-
sents the bias value of layer k. The output of the neuron i in layer

is denoted by . The total input signal into the jth
neuron of layer k is the net-stimulus and it is theweighted
summation of outputs of m neurons in the layer :

(2)

The output of the neuron j in layer k is written as

(3)

The sigmoid activation function of the neuron j in layer k is
denoted by . The feed-forward neural network (Fig. 3) is
completely trained to estimate all the weights using BPN algo-
rithm given in Appendix B.

III. ARTIFICIAL NEURAL NETWORK MODELS OF WGS

In order to build an ANN, it is necessary to identify the input
and output variables. Seven parameters are available to esti-
mate the power output of a WG. These are wind speed and PCC
voltage: , and . In the ANN framework,
these are called input variables. These inputs are fed to the input
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layer of the neural network. The outputs of the neural network
are the three phase powers (real and reactive) being delivered by
theWG at the PCC to the distribution system. The output, there-
fore, consists of six variables representing the real and reactive
powers from each of the three phases ( , and
). These output variables represent the output layer of the

neural network. In sections below, the process of building and
testing, ANN Models of DFIG Type-3 WG and PMSG Type-4
WG are described.

A. ANN Model for Type-3 DFIG WG

To create an ANN model, it is required to train a neural net-
work using a sample input-output data set (epochs) until it gives
the accurate answer. In this study, sample input/output epochs
were created using nonlinear model (A23).
The input data for the ANN model of the type-3 DFIG WG

comprises: , and . The three series were
created by taking 10 000 random numbers between 0.94 pu and
1.06 pu, one for each voltage magnitude for phases a, b, and c.
Three more series of 10 000 random data points were chosen in
the range of to 5 , one series each for voltage phase an-
gles for phases a, b, and c. In addition to that, a series of 10 000
random numbers between 4 m/s and 20 m/s was chosen as wind
speed data. Using the above mentioned input data series, output
data series is computed. Computing the output data series de-
pends on the type of WG model that is being modeled. This
work considers the Type-3 DFIGWG shown in Fig. 2 and mod-
eled using (A23) of Appendix A. Solving this model once for
every data set using Newton-Raphson technique yielded corre-
sponding output data: , and . Min-Max data normal-
ization technique was used to normalize inputs and outputs for
training ANNs.
The ANN model training algorithm explained in Appendix B

was programmed in Matlab environment. This program was
used for training the ANN model of type-3 DFIG WGs. The
convergence of weights was investigated by the evaluating
maximum absolute error (MAE) (B4) and average absolute
error (AAE) (B5) using normalized outputs. After training
numerous neural networks of different configurations (hidden
layers and neurons in each layer) using the program, the con-
figuration having the smallest average root mean square error
(ARMSE) (B6) was selected.
The smallest ARMSE was found to be 0.0138 for an ANN

consisting of four-layers. The configuration consists of seven
neurons in the input layer (three-phase voltages phasors and the
wind speed), ten neurons in the first hidden layer, ten neurons
in the second hidden layer and three neurons in the output layer
representing the three-phase real power output of the WG. The
bias values at each layer are , and , respec-
tively. The variation of AAE (B5) for this ANN is shown in
Fig. 5.
The graph in Fig. 5 is for the chosen configuration of ANN

model of type-3 DFIG WG. It shows reduction in the AAE
with training. It also shows that it is fully trained for 1000
epochs within 1000 iterations and the deviation from the
nonlinear model (A23) is minimal. This ANN model, being
a feed forward network, hold a set of matrices and it easily

Fig. 5. Reduction of absolute error over the number of iterations.

Fig. 6. Reduction of absolute error over the number of iterations.

implementable in PSS®E or PSS®SINCAL type commercial
programs for power flow analysis.

B. ANN Model for Type-4 PMSG WG

As explained in the preceding section, the same set of random
input variable series ( , and ) was con-
sidered for building ANN model of type-4 PMSG WG. Using
the Type-4 PMSG WG model in [17], real power output se-
ries ( , and ) was computed. It helped to create a set
of 10 000 epochs. After training several ANN configurations,
the configuration with the lowest ARMSE (B6) with a value of
0.0014 was selected. The selected configuration of ANN model
for Type-4 PMSG WG has four layers. The input layer and the
output layer have seven and three neurons respectively. Both
hidden layers have ten neurons each. The variation of AAE (B5)
of the selected ANN configuration during the training process
is shown in Fig. 6.
The graph shows that the ANN model of PMSG WG is fully

trained for the 1000 epochs within 1000 iterations and the de-
viation from the nonlinear model (A23) is minimal. This ANN
model is readily implementable in commercial programs such
as PSS®E or PSS®SINCAL for power flow analysis.

C. ANN Configurations and Effect of Learning Rate

The smallest ARMSE was the criterion for selecting the best
ANN configuration. Coincidentally, ARMSE, AAE and MAE
shows very similar pattern of variation. Both in ARMSE and
AAE, the output error is averaged over the number of output
neurons and number of epochs as given in (B5) and (B6). But
MAE (B4) gives the maximum absolute error at any output at
any epoch without any averaging effect. Therefore MAE gives
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Fig. 7. MAE of different ANN configurations—type-3 DFIG WG model.

Fig. 8. Convergence time of different ANN configurations of type-3 DFIG
WG.

closest picture of the trained ANN’s accuracy. Accordingly, ef-
fect of network configurations and learning rate on MAE and
training time was analyzed for the ANN model of type-3 DFIG
WG and is reported below. A similar analysis on the ANN
model of type-4 PMSG WG was completed and results were
found to be similar.
1) Effect of ANN Configuration on Accuracy: In this study,

MAE was plotted to select the best ANN configuration. Fig. 7
shows the MAE of different ANN configurations. On reviewing
Fig. 7, the ANN configuration with two hidden layer and 10 neu-
rons each has the lowest MAE and is selected for the proposed
type-3 DFIG WG model.
2) Effect of ANN Configuration on Training Time: Apart

from the accuracy of ANN, time taken for the convergence was
also studied. Fig. 8 shows convergence time required with dif-
ferent ANN configurations. Training convergence was decided
with MAE tolerance of 0.0001 and learning rate 0.7. Generally,
when the ANN configuration is complex (many hidden layers
and neurons) the convergence time is higher. However, there are
exceptional larger configurations that train faster than smaller
sized configurations.
3) Effect of Learning Rate on Training Time: The learning

rate and the MAE tolerance have a direct relationship to the
training time of ANN. In order to investigate this relationship,
the selected ANN configuration (2 hidden layers with 10 neu-
rons each) was trained with different learning rates and toler-
ance criteria. The results of this study are given in the Fig. 9.
According to the analysis, it is clear that when the optimum

Fig. 9. Convergence time of the selected ANN configuration of type-3 DFIG
WG for different learning rates and convergence criteria.

learning rate (0.5) is selected, this ANN can be trained consid-
erably faster even for a tighter convergence criterion.
FromANNmodeling study, it was noticed that, as the number

of epochs is increased for detailed modeling of WG, the ANN
WG model remains model size invariant. Further, the ANN
WG model provides continuous mapping as it interpolates its
training epoch set.

IV. DISTRIBUTION SYSTEM POWER FLOW STUDY WITH
TYPE-3 AND TYPE-4 ANN WG MODELS

Successful training in Sections IV.A and IV.B show that the
proposed ANN models accurately map the nonlinear models
of WG, (A23) and [17] for type-3 DFIG and type-4 PMSG.
In this section, we test the performance of the proposed ANN
WGmodels in power flow analysis. Even though we implement
these proposed ANN models in the modified ladder iterative
technique, they equally suitable to use with other methods of
power flow analysis.
The IEEE 37-bus test distribution system [20], shown in

Fig. 10, was used to assess the performance of the proposed
ANN models of type-3 DFIG and type-4 PMSG WGs. This
test system is an unbalanced three-phase distribution system
with unbalanced loads and underground cables. The power
balance equations were solved using the ladder iterative tech-
nique [21] (Fig. 1). All the unbalanced network components
were modeled accurately considering their mutual couplings
and capacitance elements. In accurate three-phase power flow
studies, WGs have to be modeled accurately considering all the
three phases. In order to check performance of different WG
models, two separate distribution system power flow studies
(Study 1 and Study 2) were completed in Matlab considering
type-3 DFIG WG and type-4 PMSG WG models, respectively.
In each power flow study, the proposed ANN WG models
were compared with corresponding traditional fixed PQ WG
model and with corresponding nonlinear model to assess the
accuracy of the proposed model and solution. In both studies
it is assumed that a WG is connected to bus 775 and that the
rating of the transformer XFM-1 connected between bus 775
and 709 was modified to match the power generation from the
WG. In order to magnify the effects of the wind generator, a
1.0-MW per-phase pure active power load was added at buses
730 and 731. These assumptions are similar to those of [16] and
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Fig. 10. Wind generator connection to the IEEE 37 three-phase distribution
system.

[17]. Both the ANN and the nonlinear WGmodels that estimate
power output are functions of wind speed and three-phase PCC
voltage phasors. For fixed PQ models, the power output is
estimated externally using the power output curves supplied by
the WG manufacturer for the operating wind speed and is not
a function of PCC voltage. For these power flow studies, the
wind speed was assumed equal to 14 m/s for all models.

A. Study 1: IEEE 37-Bus System With Type-3 DFIG WG

The details for this power flow study include: 1) the capacity
of the transformer XFM-1 was taken as 1.5 MVA (0.5 MVA in
original IEEE 37-bus test system) and the same was considered
as the system MVA base, 2) the transformer low voltage side is
taken to be 2.4 kV (0.48 kV in original IEEE 37-bus test system).
This data is same as that used in [16]. Three cases with different
type-3 DFIG WG models were considered:

Case 1 is a power flow study using the nonlinear DFIGWG
model described in (A23) and [16]. The WG is assumed to
operate at unity power factor.
Case 2 is a power study using, a fixed PQ model having
negative real power load of 0.8916 pu for all three-phases.
Reactive power injection was assumed zero for all three
phases.
Case 3 is a power flow study using the proposed ANN
type-3 DFIG WG model explained Section III. This ANN
model mimics unity power factor operation of the non-
linear model [16].

Except for the WG models, all other values were the same in all
three cases. Wind speed is 14 m/s for all three cases. The non-
linear WG model (i.e., model used in Case 1) is considered as
the most accurate because it has no approximations [16]. There-
fore, Case 1 was used as the basis for the comparison with the
other two cases. The accuracy of the power flow solution using
the proposed ANN model was compared with Case 1, revealing
a close match of results. Fig. 11 shows the deviations of voltage
solutions of Cases 2 and 3 of power flow study 1 compared to
the voltage solution of Case 1. From the graph (Fig. 11), it can

Fig. 11. Study 1: case 2 (PQ model) and case 3 (ANN model) bus voltage
deviations from the voltage solution of case 1 (accurate nonlinear model).

TABLE II
EXECUTION TIMES WITH TYPE-3 DFIG WG MODELS

be clearly noted that power flow results of Case 3 with ANN
model of DFIG WG, are in very good agreement with those of
Case 1 with the nonlinear WG model. In contrast, Case 2 with
the fixed PQ model gives the larger error as compared to Case
1. These power flow solution errors are the result of inaccurate
estimates of WG model’s real power output. Fixed PQ model
has the highest real power output errors compared with real
power output of nonlinear model. They are 10%, 2%, and 6% in

, and respectively. Observed real power output esti-
mation errors in ANNWGmodel are 0%, 2%, and 0% in ,
and , respectively. This clearly shows that even though the
errors in the voltage solution are small, the corresponding real
power solution is significantly inaccurate.
The main advantage of the ANN-based approach is its high

accuracy which is comparable to that of the nonlinear models
while it greatly surpasses the nonlinear models in computa-
tional speed. Table II shows that the fixed PQ models have the
fastest execution times because the PF reads those models by
loading a simple data file with no further computation. While
the ANNmodel of type-3 DFIGWG has the second best execu-
tion time, the nonlinear models have the slowest execution time.
Comparing the execution times, it is noted that the ANN model
of type-3 DFIG WG is twelve times faster than the nonlinear
model. This leads to a much faster solution of the power flow
study. In the study 1, the total execution time was improved by
about 40% when the ANN model is used instead of nonlinear
model. Even though the improvement may seems to be mod-
erate in absolute terms for this simple system with one WG, the
improvement will be significant when solving power flow prob-
lems of large systems with several WGs.
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Fig. 12. Study 2: case 2 (PQ model) and case 3 (ANN model) bus voltage
deviations from the voltage solution of case 1 (accurate nonlinear model).

B. Study 2: IEEE 37-Bus System With Type-4 PMSG WG

The details of this power flow study are as follows [17]: 1) the
capacity of the type-4 PMSG WG, system power base and the
rating of XFM-1 are 2 MVA, 2) the generation voltage is 575 V
(the low side voltage rating of XFM-1).
Similar to the previous comparison, three cases were consid-

ered with different type-4 PMSGWGmodels and the results are
compared. Wind speed is 14 m/s for all three cases below.

Case 1 is a power flow study using the accurate nonlinear
WG model described in [17]. Reactive power supply is
assumed zero for all three phases.
Case 2 is a power flow study using, a fixed PQ model
having negative real power load of 1.0 pu for all three
phases. Reactive power injection was assumed zero for all
three phases.
Case 3 is a power flow study with the proposed ANN
type-4 PMSGWGmodel explained Section III. This ANN
model mimics the unity power factor operation of non-
linear model of [17].

Fig. 12 shows the deviations of voltage solutions of Cases 2 and
3 of power flow study 2 compared to the voltage solution of Case
1, which is the most accurate solution. It can be clearly seen that
power flow results of Case 3 using ANNmodel of type-4 PMSG
WGs is in very good agreement with accurate results of Case 1
using the nonlinear WG models (Fig. 12). In contrast, Case 2
with the fixed PQ models give the larger error as compared to
Case 1.
Per phase real power output estimation errors in , and
(compared with nonlinear model) are: 6%, 4%, and 2%, re-

spectively, for the fixed PQ model, and 2%, 1%, and 1% for the
ANN WG model. On making time based performance compar-
ison, the proposed ANN model for type-4 PMSG WG is much
faster than the corresponding nonlinear model, Table III.

V. IMPLEMENTATION IN COMMERCIAL SOFTWARE PACKAGES

From Figs. 11 and 12 and Tables II and III, it can be seen
the ANN models of type-3 DFIG and type-4 PMSG WGs are

TABLE III
EXECUTION TIMES WITH PMSG TYPE-4 WG MODELS

Fig. 13. Snapshot of each PSS®E PF iteration.

as accurate as nonlinear models and much faster than the non-
linear models. Further, as shown above, the ANN model can be
built for any type/size of wind turbine/farm without extra ef-
fort. The only requirement is the complete data set explained in
Section IV.
An important benefit of the proposed ANN models of WGs

is that their ready integration into popular commercial power
system analysis software. To investigate the flexibility of im-
plementation in commercial power flow software, the ANN
model of type-3 DFIG WG explained in Section IV was coded
using python script language in Power System Simulator for
Engineers (PSS®E) software. The PSS®E is a transmission
system planning tool which calculates network states assuming
the single line equivalent network. But the ANN type-3 DFIG
WG model described in Section IV was built considering a
three-phase system. To overcome this incompatibility a posi-
tive sequence phasor system was generated using the voltage
solution of PSS®E power flow iteration. Then the generated
positive sequence voltage phasor system was fed to the ANN
model of type-3 DFIGWG. At end of each power flow iteration,
bus voltages are updated and hence the power output from the
wind turbine is updated (Fig. 13). The ANN model of type-3
DFIG WG described in Section VI was implemented in a
hypothetical test system which signifies the effect of WG. This
implementation was verified by establishing identical results in
Matlab environment using ANN model of type-3 DFIG WG.
The Fig. 14 shows variation in the output of the ANN model
of type-3 DFIG WG with PSS®E voltage solution. The power
flow solution process converged and the ANN model of type-3
DFIG WG stabilized at 0.8908 pu as its active power output.
The same ANNmodel of type-3 DFIGWGwas implemented

in PSS®SINCAL, which can solve three-phase unbalanced
distribution system power balance equations. The ANN model
of type-3 DFIG WG was coded as a Windows Script macro
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Fig. 14. Variation of real power output of ANN WG model in PSS®E.

Fig. 15. Variation of three-phase real power output mismatch of ANN WG
model in PSS®SINCAL.

in PSS®SINCAL. The real power output mismatch of ANN
model of type-3 DFIG WG at the end of each power flow itera-
tion is shown in Fig. 15. When the voltage solution converges,
the output of the ANN model also stabilizes and mismatch
approaches zero. These implementations are possible because
the ANN model does not require any complex solvers or
optimization techniques to estimate the power outputs.
These implementations proved the simplicity of adopting the

ANN models of WGs for any practical power flow study. It fur-
ther reveals that the ANN model of type-3 DFIG WG can be
adapted to any system, even for those where actual manufac-
turer data is not available. In that case the ANNmodel of type-3
DFIGWG is built using themeasured inputs-outputs of the wind
generator and integrated into the power flow analysis software
using simple programming code.
Further, it is important to point out that, on testing the pro-

posed ANN WG model, it has not caused any algorithmic sta-
bility issues with the Ladder Iterative Technique or other power
flow solution techniques used in PSS®E and PSS®SINCAL.

VI. CONCLUSION

This paper reports the development of ANN-based models of
type-3 DFIG and type-4 PMSGWGs, test their performance and
demonstrates their ready integration into popular commercial
power system analysis software. These ANN models are: 1) ac-
curate three-phase models as the true nonlinear models that are
functions of wind speed and terminal voltage phasors, 2) suit-
able for unbalanced three-phase systems, 3) much faster than

conventional nonlinear models, 4) universal hence they can be
trained to model any type/size of WGs, 5) readily extendable to
model WGs without nonlinear models using measured data, and
6) easily extendable for modeling wind farms.
The proposed ANNmodels are trained using accurate models

of WGs and implemented in power flow algorithms in Matlab,
PSS®E and PSS®SINCAL.
Comparing accuracy of results of the power flow studies with

fixed PQmodels that are a function of wind speed, nonlinear ac-
curate models andANNmodels, it can be seen that ANNmodels
give very accurate solutions that are very close to those of the
nonlinear models. Furthermore, ANNWGmodels are computa-
tionally ten times faster than nonlinear WGmodels. The fast ex-
ecution of ANNWGmodels improve the overall execution time
of power flow algorithm by at least 40%, as demonstrated when
testing with a small distribution system with one WG. This im-
provement will be very significant for larger systems with sev-
eral WGs.
As a further contribution of this paper, these ANN WG

models have been demonstrated to be easily implemented
in commercial software packages such as the PSS®E and
PSS®SINCAL which only require minimal integration effort
entailing only a few lines of coding. The results from these
commercial software packages thus evidently prove the fea-
sibility of applying the proposed ANN models to practical
engineering power flow studies.

APPENDIX

A. Nonlinear Mathematical Model of Type-3 DFIG WG [16]

Mechanical power of the turbine is given as

(A1)

where

(A2)

The turbine and the rotor angular speeds are given as

(A3)

(A4)

Real and reactive power supplies from the grid side converter
to the PCC are given as

(A5)

(A6)
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The induction machine’s slip is converted to different symmet-
rical component networks as follows:

(A7)

Converted sequence network impedances are

(A8)

(A9)

(A10)

(A11)

(A12)

Induced emf at the stator is written as follows:

(A13)

The currents on sequence networks are described from

(A14)

(A15)

(A16)

The relationship of real power balance is described as

(A17)

(A18)

(A19)

and real power balance at any phase

(A20)

The real and the reactive power output of the WG are

(A21)

(A22)

Combining (A1)–(A22), it is possible to form a matrix set of
equations as follows:

(A23)

Equation (A23) may be solved with the knowledge of
and to determine and using Newton-
Raphson technique.

B. Artificial Neural Network Training Algorithm [19]

When the normalized inputs are fed to the input layer, the
error of the jth neuron in output layer (T) compared with
the normalized target output is estimated as

(B1)

The propagated errors of the hidden layers are estimated as

(B2)

The weights are updated in order to minimize the error at the
output layer. The updating formula is given in (B3):

(B3)

where is the iteration count. The MAE, the AAE, the ARMSE
are estimated by (B4), (B5), and (B6), respectively:

(B4)

(B5)

(B6)
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