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Abstract
Consider a discrete-time insurance risk model in which the insurer makes both risk-

free and risky investments. Assume that the one-period insurance and financial risks
form a sequence of independent and identically distributed copies of a random pair
(X, Y ) with dependent components. When the product XY is heavy tailed, under a
mild restriction on the dependence structure of (X, Y ), we establish for the finite-time
ruin probability an asymptotic formula, which coincides with the long-standing one in
the literature. Various important special cases are presented, showing that our work
generalizes and unifies some of recent ones.

Keywords: Asymptotics; Dependence; Finite-time ruin probability; Heavy-tailed
distribution; Insurance and financial risks; Product

MSC 2010: Primary 91B30; Secondary: 62P05, 62E20, 62H20

1 Introduction

Consider a discrete-time insurance risk model. Within period i, i ∈ N, the net insurance

loss (equal to the total claim amount plus other costs minus the total premium income) is

denoted by a real-valued random variable Xi. Suppose that the insurer makes both risk-

free and risky investments, which lead to an overall stochastic discount factor over period i,

denoted by a positive random variable Yi. In the terminology of Norberg (1999) and Tang

and Tsitsiashvili (2003), we call {Xi, i ∈ N} insurance risks and call {Yi, i ∈ N} financial

risks. Thus, the sum
n∑

i=1

Xi

i∏

j=1

Yj, n ∈ N,
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represents the stochastic present value of aggregate net losses up to time n. As is well

known, the probability of ruin by time n, namely, the probability of the insurer’s wealth

process going below zero by time n, is equal to

ψ(x;n) = Pr

(
max

1≤m≤n

m∑

i=1

Xi

i∏

j=1

Yj > x

)
, n ∈ N, (1.1)

where x ≥ 0 is the initial wealth of the insurer.

Since Nyrhinen (1999, 2001) and Tang and Tsitsiashvili (2003, 2004), there has been

a vast amount of works in the literature focusing on the asymptotic behavior of the ruin

probability of this discrete-time risk model for heavy-tailed cases. This study is particularly

relevant nowadays in view of recent more and more frequent natural, social and financial

catastrophes causing the increasing prudence of regulators in the insurance and banking

industries.

In Tang and Tsitsiashvili (2003, 2004), it was assumed that {Xi, i ∈ N} and {Yi, i ∈ N}
are two sequences of independent and identically distributed (i.i.d.) random variables and

the two sequences are independent of each other as well. Undoubtedly, this assumption of

complete independence is far unrealistic. Recently, a new trend of the study is to incorporate

various dependence structures to the risk model. In this direction, we refer the reader to

Goovaerts et al. (2005), Laeven et al. (2005), Tang and Vernic (2007), Chen and Ng (2007),

Zhang et al. (2009), Weng et al. (2009), Chen (2011) and Yang and Wang (2013), among

many others.

In particular, Chen (2011) extended the study to the situation where the insurance and

financial risks are dependent according to a bivariate Farlie-Gumbel-Morgenstern (FGM)

distribution

Λ (x, y) = F (x)G(y)
(
1 + θF (x)G(y)

)
, (1.2)

where F = 1−F on R = (−∞,∞) and G = 1−G on R+ = [0,∞) are marginal distribution

functions, and θ ∈ [−1, 1] is a parameter governing the strength of dependence. This is an

important extension in view of the fact that the insurance risk Xi and the financial risk Yi

over period i occur in the same or a similar macroeconomic environment and, hence, should

be strongly dependent on each other.

In this paper we shall follow Chen (2011) to assume that (Xi, Yi), i ∈ N, form a sequence

of i.i.d. random pairs with a generic random pair (X, Y ). We shall impose a mild restriction

(3.1) on the dependence of (X, Y ), which is much more general than the FGM structure.

When the product XY is heavy tailed, or, more precisely, it has a long and dominatedly

varying tail, we shall establish for the finite-time ruin probability an asymptotic formula

ψ(x;n) ∼
n∑

i=1

Pr

(
Xi

i∏

j=1

Yj > x

)
. (1.3)
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This formula coincides with the long-standing one in the literature since Tang and Tsitsi-

ashvili (2003). A few important special cases are presented as corollaries, showing that our

work generalizes and unifies some of recent ones.

The rest of this paper consists of three sections. Section 2 prepares preliminaries of

heavy-tailed distributions, Section 3 presents the main result and its corollaries, and Section

4 proves the main result.

2 Preliminaries

Throughout this paper, all limit relationships are according to x → ∞ unless otherwise

stated. For two positive functions f(·) and g(·), we write f(x) . g(x) or g(x) & f(x) if

lim sup f(x)/g(x) ≤ 1, write f(x) ∼ g(x) if lim f(x)/g(x) = 1, and write f(x) � g(x) if f(·)
and g(·) are weakly equivalent, that is, 0 < lim inf f(x)/g(x) ≤ lim sup f(x)/g(x) <∞. We

often use the letter C to denote an absolute positive constant, which does not depend on

the working variables such as x and A.

A distribution function H on R is said to be long tailed, written as H ∈ L, if its ultimate

right tail H satisfies

lim
x→∞

H(x+ y)

H(x)
= 1 for all y ∈ R. (2.1)

Automatically, relation (2.1) holds uniformly for every compact set of y. Hence, it is easy to

see that there exists a function a(·), with 0 ≤ a(x) ≤ x/2 and a(x) ↑ ∞, such that relation

(2.1) holds uniformly for −a(x) ≤ y ≤ a(x); namely,

lim
x→∞

sup
−a(x)≤y≤a(x)

∣∣∣∣
H(x+ y)

H(x)
− 1

∣∣∣∣ = 0.

A distribution function H on R is said to be dominatedly-varying tailed, written as H ∈ D,

if its ultimate right tail H satisfies

lim sup
x→∞

H(xy)

H(x)
<∞ for all 0 < y < 1.

The intersection L∩D forms a useful subclass of heavy-tailed distributions and it has been

often proposed as a standard assumption on the distributions of heavy-tailed risk variables.

In particular, the intersection L ∩ D covers the famous class R of distributions with a

regularly-varying tail. By definition, for a distribution function H on R, we write H ∈ R−α
for some 0 ≤ α <∞ if its right tail H is regularly varying with index −α; namely,

lim
x→∞

H(xy)

H(x)
= y−α for all y > 0.
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The reader is referred to the monograph Embrechts et al. (1997) for details of these and

related classes of heavy-tailed distributions.

For a distribution function H with an ultimate right tail, define

M∗(H) = inf

{
− logH∗(y)

log y
: y > 1

}
with H∗(y) = lim inf

x→∞
H(xy)

H(x)
,

and we call M∗(H) the upper Matuszewska index of H. It is clear that H ∈ D if and only

if 0 ≤M∗(H) <∞, and that if H ∈ R−α then M∗(H) = α.

For a distribution function H with M∗(H) <∞, or, equivalently, H ∈ D, by Proposition

2.2.1 of Bingham et at. (1987), we see that, for every β > M∗(H), there are some positive

constants C and D such that the inequality

H(x)

H(xy)
≤ Cyβ (2.2)

holds for all xy ≥ x ≥ D. From (2.2), it is easy to see that the relation

x−β = o
(
H(x)

)
(2.3)

holds for every β > M∗(H). See also Tang and Tsitsiashvili (2003) for these results.

Lemma 2.1 Let X and Y be two independent random variables with Y positive. Denote by

F and H the distribution functions of X and XY , respectively.

(a) If F ∈ L ∩ D and E[Y β] < ∞ for some β > M∗(F ), then H(x) � F (x), H ∈ L ∩ D
and M∗(H) = M∗(F ).

(b) If F ∈ R−α and E[Y β] <∞ for some β > α ≥ 0, then H(x) ∼ E[Y α]F (x).

Proof. (a) By Theorem 2.2 of Cline and Samorodnitsky (1994), H ∈ L. Moreover, by

Theorem 3.3 of Cline and Samorodnitsky (1994), H ∈ D and H(x) � F (x). The result

M∗(H) = M∗(F ) follows from H(x) � F (x).

(b) This is a restatement of Breiman’s theorem; see Cline and Samorodnitsky (1994),

who attributed the result to Breiman (1965).

3 The Main Result and Its Corollaries

Recall the insurance risk model introduced in Section 1. In the sequel, denote by F on R,

G on R+ and H on R the distribution functions of X, Y and XY , respectively. Here comes

our main result:
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Theorem 3.1 Assume that H ∈ L ∩ D, E[Y β] <∞ for some β > M∗(H), and

lim
A→∞

lim sup
x→∞

Pr (XY > x, Y > A)

Pr (XY > x)
= 0. (3.1)

Then relation (1.3) holds for each n ∈ N; namely,

ψ(x;n) ∼
n∑

i=1

Pr

(
Xi

i∏

j=1

Yj > x

)
. (1.3)

In Theorem 3.1, if H ∈ R−α and E[Y β] <∞ for some β > α ≥ 0, then applying Lemma

2.1(b), each term on the right-hand side of (1.3) satisfies

Pr

(
Xi

i∏

j=1

Yj > x

)
= Pr

(
XiYi

i−1∏

j=1

Yj > x

)
∼ (E[Y α])i−1H(x).

Thus, relation (1.3) is simplified to

ψ(x;n) ∼ 1− (E[Y α])n

1− E[Y α]
H(x), (3.2)

where the right-hand side is understood as nH(x) if E[Y α] = 1. Furthermore, if E[Y α] < 1,

then following the proof of Theorem 3.1 of Tang and Tsitsiashvili (2004), we can prove that

relation (3.2) holds uniformly for all n ∈ N; that is,

lim
x→∞

sup
n∈N

∣∣∣∣∣
ψ(x;n)

1−(E[Y α])n

1−E[Y α]
H(x)

− 1

∣∣∣∣∣ = 0.

In particular, plugging n =∞ into (3.2) yields

ψ(x;∞) = Pr

(
max

1≤m<∞

m∑

i=1

Xi

i∏

j=1

Yj > x

)
∼ 1

1− E[Y α]
H(x). (3.3)

In this way, we obtain the following first corollary of Theorem 3.1:

Corollary 3.1 If H ∈ R−α, E[Y β] < ∞ for some β > α ≥ 0, and condition (3.1) holds,

then relation (3.2) holds for every n ∈ N. Furthermore, if E[Y α] < 1, then relation (3.2)

holds uniformly for all n ∈ N and, hence, relation (3.3) holds.

We remark that the requirement in (3.1) is indeed mild and it provides us with enough

flexibility in introducing dependence to (X, Y ). We are going to present a few important spe-

cial cases as corollaries of Theorem 3.1, with various concrete patterns of dependence ranging

over independence, arbitrary dependence, FGM structure, common shock and regression-

type dependence. In all of these corollaries, once the intersection L ∩D shrinks to the class
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R, then, as has been done in Corollary 3.1, analogous simplifications and extensions of the

obtained formulas follow immediately. In order to keep the paper short, we shall not repeat

such simplifications and extensions.

First of all, note that if the financial risk Y is bounded, then the numerator in (3.1)

is zero for all large A and relation (3.1) holds automatically regardless of any dependence

structure between X and Y . This leads to the following:

Corollary 3.2 If F ∈ L ∩ D and Y is bounded from above, then relation (1.3) holds for

each n ∈ N.

Corollary 3.3 below retrieves Theorem 5.1 of Tang and Tsitsiashvili (2003):

Corollary 3.3 If X and Y are independent, F ∈ L ∩ D, and E[Y β] < ∞ for some β >

M∗(F ), then relation (1.3) holds for each n ∈ N.

Proof. By Lemma 2.1(a), we have H(x) � F (x), H ∈ L ∩ D and M∗(H) = M∗(F ). It

remains to verify condition (3.1). Arbitrarily choosing A > 1 and M∗(F )/β < p < 1, by

(2.2) and (2.3) we have

Pr (XY > x, Y > A) ≤ Pr (XY > x, xp ≥ Y > A) + Pr (Y > xp)

≤
∫ xp

A

F

(
x

y

)
dG(y) +

1

xpβ
E[Y β]

. CF (x)

∫ xp

A

yβdG(y) + o
(
F (x)

)

. CF (x)E
[
Y β1(Y >A)

]
. (3.4)

Then by the finiteness of E[Y β], condition (3.1) is verified.

Corollary 3.4 below partially retrieves Theorem 3.1 of Chen (2011) for the case of L∩D
and its special case with θ = 0 corresponds to Corollary 3.3:

Corollary 3.4 If X and Y follow a bivariate FGM distribution function (1.2) with F ∈
L∩D, E[Y β] <∞ for some β > M∗(F ), and θ ∈ (−1, 1], then relation (1.3) holds for each

n ∈ N.

Proof. By relation (4.9) of Chen (2011, page 1041),

Pr (XY > x) ∼ Pr (XZθ > x) , (3.5)

where Zθ is a nonnegative random variable independent of X and distributed by

Gθ(y) = (1− θ)G(y) + θG2(y), y > 0.
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Thus, E[Zβ
θ ] < ∞. Then applying Lemma 2.1(a) to the right-hand side of (3.5), we have

H(x) � F (x), H ∈ L ∩ D and M∗(H) = M∗(F ).

It remains to verify condition (3.1). Recall identity (4.5) of Chen (2011, page 1040),

Λ = (1 + θ)FG− θFG2 − θF 2G+ θF 2G2.

Introduce six independent random variables X∗, X∗1 , X∗2 , Y ∗, Y ∗1 and Y ∗2 with the first three

identically distributed as X and the last three as Y . We have

Pr (XY > x, Y > A)

= (1 + θ) Pr (X∗Y ∗ > x, Y ∗ > A)− θPr (X∗ (Y ∗1 ∨ Y ∗2 ) > x, Y ∗1 ∨ Y ∗2 > A)

−θPr ((X∗1 ∨X∗2 )Y ∗ > x, Y ∗ > A) + θPr ((X∗1 ∨X∗2 ) (Y ∗1 ∨ Y ∗2 ) > x, Y ∗1 ∨ Y ∗2 > A)

= (1 + θ) I1(x,A)− θI2(x,A)− θI3(x,A) + θI4(x,A). (3.6)

Clearly, the conditions F ∈ L∩D and E[Y β] <∞ imply that F 2 ∈ L∩D and E
[
(Y ∗1 ∨ Y ∗2 )β

]
<

∞. By going along the same lines of (3.4), we have, respectively,

I1(x,A) . CF (x)E
[
Y β1(Y >A)

]
,

I2(x,A) . CF (x)E
[
(Y ∗1 ∨ Y ∗2 )β 1(Y ∗1 ∨Y ∗2 >A)

]
,

I3(x,A) . 2CF (x)E
[
Y β1(Y >A)

]
,

I4(x,A) . 2CF (x)E
[
(Y ∗1 ∨ Y ∗2 )β 1(Y ∗1 ∨Y ∗2 >A)

]
.

Substituting these estimates into (3.6) and recalling θ ∈ (−1, 1] and H(x) � F (x), it becomes

straightforward to verify condition (3.1).

In Corollary 3.5 below we use another approach to model dependent risks. Let

X = UW and Y = VW, (3.7)

where U , V and W are three independent random variables with U real valued while V

and W positive. The incentive behind this modeling is that U and V are used to depict

the magnitude of the risk variables, while W , often called common shock in contemporary

credit risk modeling, is included to generate strong dependence for the risk variables. See

for example Bassamboo et al. (2008) and Tang and Yuan (2013) for related discussions.

Corollary 3.5 Let X and Y be modeled as in (3.7) with independent U , V and W . If U is

distributed by FU ∈ L ∩ D and E[V β] + E[W 2β] < ∞ for some β > M∗(FU), then relation

(1.3) holds for each n ∈ N; that is,

ψ(x;n) ∼
n∑

i=1

Pr

(
UiViW

2
i

i−1∏

j=1

VjWj > x

)
,
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where {U,Ui, i ∈ N}, {V, Vi, i ∈ N} and {W,Wi, i ∈ N} are three independent sequences of

i.i.d. random variables.

Proof. Note that H(x) = Pr (UVW 2 > x), applying Lemma 2.1(a), we have H(x) � FU(x),

H ∈ L ∩ D and M∗(H) = M∗(FU). It remains to verify condition (3.1). Analogously to

(3.4), there is some C > 0 such that

Pr (XY > x, Y > A) = Pr
(
UVW 2 > x, V W > A

)
. CFU(x)E[V βW 2β]1(VW>A).

Condition (3.1) is verified and, hence, relation (1.3) holds for each n ∈ N.

Motivated by the works of Asimit and Badescu (2010), Li et al. (2010) and Chen and

Yuen (2012), we make the following regression-type assumption on the dependence between

X and Y : there is a measurable function h : [0,∞) 7−→ (0,∞) such that the relation

Pr (X > x|Y = y) ∼ Pr (X > x)h(y) (3.8)

holds uniformly for y ≥ 0; namely,

lim
x→∞

sup
y≥0

∣∣∣∣
Pr (X > x|Y = y)

Pr (X > x)h(y)
− 1

∣∣∣∣ = 0.

Corollary 3.6 Under condition (3.8), if F ∈ L ∩ D and E
[
Y β (h(Y ) + 1)

]
< ∞ for some

β > M∗(F ), then relation (1.3) holds for each n ∈ N.

Proof. A natural consequence of condition (3.8) is that E[h(Y )] = 1; see also Li et al.

(2010). Introduce a nonnegative random variable Ỹ independent of X and distributed by

Pr
(
Ỹ ∈ dy

)
= h(y) Pr (Y ∈ dy) .

Under condition (3.8), with arbitrarily chosen M∗(F )/β < p < 1 we have

H(x) = Pr (XY > x, Y ≤ xp) + Pr (XY > x, Y > xp)

=

∫ xp

0

Pr

(
X >

x

y

∣∣∣∣Y = y

)
Pr (Y ∈ dy) +O (Pr (Y > xp))

∼
∫ xp

0

Pr

(
X >

x

y

)
h(y) Pr (Y ∈ dy) +O

(
x−pβ

)

=

(∫ ∞

0

−
∫ ∞

xp

)
Pr

(
X >

x

y

)
Pr
(
Ỹ ∈ dy

)
+O

(
x−pβ

)

= Pr
(
XỸ > x

)
+O

(
x−pβ

)
, (3.9)

where in the second and third steps we applied E[Y β] <∞ and

E
[
Ỹ β
]

= E
[
Y βh(Y )

]
<∞.
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Applying Lemma 2.1(a) to the right-hand side of (3.9), and recalling (2.3), we have

H(x) ∼ Pr
(
XỸ > x

)
+O

(
x−pβ

)
∼ Pr

(
XỸ > x

)
� F (x).

Consequently, H ∈ L ∩ D and M∗(H) = M∗(F ).

It remains to verify condition (3.1). Analogously to (3.9) and (3.4), with arbitrarily

chosen M∗(F )/β < p < 1, some C > 0 and all large x, we have

Pr (XY > x, Y > A)

∼
∫ xp

A

Pr

(
X >

x

y

)
h(y) Pr (Y ∈ dy) +O

(
x−pβ

)

=

∫ xp

A

Pr

(
X >

x

y

)
Pr
(
Ỹ ∈ dy

)
+ o

(
F (x)

)

≤ CF (x)

∫ xp

A

yβ Pr
(
Ỹ ∈ dy

)
+ o

(
F (x)

)

≤ CF (x)E
[
Ỹ β1(Ỹ >A)

]
+ o

(
F (x)

)
.

Condition (3.1) is verified and, hence, relation (1.3) holds for each n ∈ N.

4 Proof of the Main Result

To help with presentation, we introduce the notation Π0 = 1 and Πi =
∏i

j=1 Yj for i ∈ N.

4.1 A lemma

The following lemma plays a key role in the proof of Theorem 3.1:

Lemma 4.1 Under the conditions of Theorem 3.1, it holds for every positive function

a(x)→∞ and for each 1 ≤ i 6= k ≤ n that

Pr (|Xi|Πi > a(x), XkΠk > x) = o
(
H(x)

)
. (4.1)

Proof. First consider 1 ≤ i < k ≤ n. With some M∗(H)/β < p < 1, we do the split

Pr (|Xi|Πi > a(x), XkΠk > x)

= Pr (|Xi|Πi > a(x), XkΠk > x,Πk−1 > xp)

+ Pr (|Xi|Πi > a(x), XkΠk > x,Πk−1 ≤ xp)

= I1(x) + I2(x).

For I1(x), by Markov’s inequality and relation (2.3),

I1(x) ≤ Pr (Πk−1 > xp) ≤ 1

xpβ
(
E[Y β]

)k−1
= o

(
H(x)

)
.
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For I2(x), noticing that {Xi, Y1, . . . , Yk−1} are independent of {Xk, Yk} and applying inequal-

ity (2.2), it holds for some C > 1 and all large x that

I2(x) =

∫ xp

0

Pr

(
XkYk >

x

y

)
Pr (|Xi|Πi > a(x),Πk−1 ∈ dy)

≤
∫ xp

0

Pr

(
XkYk >

x

y ∨ 1

)
Pr (|Xi|Πi > a(x),Πk−1 ∈ dy)

≤ CH(x)

∫ xp

0

(y ∨ 1)β Pr (|Xi|Πi > a(x),Πk−1 ∈ dy)

≤ CH(x)E
[(

Πβ
k−1 ∨ 1

)
1(|Xi|Πi>a(x))

]

= o
(
H(x)

)
, (4.2)

where the last step is due to

E
[
Πβ
k−1 ∨ 1

]
≤ E

[
k−1∏

j=1

(
Y β
j ∨ 1

)]
=
(
E
[
Y β ∨ 1

])k−1
<∞

and the obvious fact that Pr (|Xi|Πi > a(x))→ 0. Thus, relation (4.1) holds.

Next consider 1 ≤ k < i ≤ n. Arbitrarily choosing some A > 0 and using the same p as

specified above, we derive

Pr (|Xi|Πi > a(x), XkΠk > x) = Pr (|Xi|Πi > a(x), XkΠk > x,Πk−1 > xp)

+ Pr (|Xi|Πi > a(x), XkΠk > x, Yk > A,Πk−1 ≤ xp)

+ Pr (|Xi|Πi > a(x), XkΠk > x, Yk ≤ A,Πk−1 ≤ xp)

= J1(x) + J2(x) + J3(x). (4.3)

Similarly to I1(x), it holds that

J1(x) ≤ Pr (Πk−1 > xp) = o
(
H(x)

)
.

Now we turn to J2(x). By condition (3.1), for arbitrarily given ε > 0, it holds for all large

A and x that

Pr (XY > x, Y > A) ≤ εH(x).

By this and inequality (2.2), it holds for some C > 1, all large A and x that

J2(x) ≤ Pr (XkΠk > x, Yk > A,Πk−1 ≤ xp)

=

∫ xp

0

Pr

(
XkYk >

x

y
, Yk > A

)
Pr (Πk−1 ∈ dy)

≤ ε

∫ xp

0

Pr

(
XkYk >

x

y

)
Pr (Πk−1 ∈ dy)

≤ CεH(x)

∫ xp

0

(y ∨ 1)β Pr (Πk−1 ∈ dy)

≤ CεH(x)E
[
Πβ
k−1 ∨ 1

]
.
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By the arbitrariness of ε > 0 and the finiteness of the last expectation, it follows that

lim
A→∞

lim sup
x→∞

J2(x)

H(x)
= 0.

Finally, we deal with J3(x). Clearly,

J3(x) ≤ Pr

(
|Xi|

i∏

j=1,j 6=k
Yj >

a(x)

A
,XkΠk > x,Πk−1 ≤ xp

)
.

Then, analogously to (4.2), it holds for some C > 1 that

J3(x) ≤
∫ xp

0

Pr

(
XkYk >

x

y

)
Pr

(
|Xi|

i∏

j=1,j 6=k
Yj >

a(x)

A
,Πk−1 ∈ dy

)

≤ CH(x)E
[(

Πβ
k−1 ∨ 1

)
1(|Xi|

∏i
j=1,j 6=k Yj>a(x)/A)

]

= o
(
H(x)

)
.

Plugging these estimates for J1(x), J2(x) and J3(x) into (4.3) we conclude that relation (4.1)

still holds.

A referee kindly points out to us, and we agree, that Lemma 4.1 can also be obtained by

using Lemma 7 of a recently published paper by Tang and Yuan (2014).

4.2 Proof of Theorem 3.1

Note that, by (1.1),

Pr

(
n∑

i=1

XiΠi > x

)
≤ ψ(x;n) ≤ Pr

(
n∑

i=1

X+
i Πi > x

)
,

where each X+
i = Xi ∨ 0 denotes the positive part of Xi. In order to prove (1.3), it suffices

to prove the following two relations:

Pr

(
n∑

i=1

X+
i Πi > x

)
.

n∑

i=1

Pr (XiΠi > x) ; (4.4)

Pr

(
n∑

i=1

XiΠi > x

)
&

n∑

i=1

Pr (XiΠi > x) . (4.5)

By Lemma 2.1(a), each XiΠi = XiYiΠi−1 follows a distribution in L ∩ D. Thus, we

can find a function a(·) : [0,∞) → [0,∞) with a(x) ↑ ∞ and a(x)/x ↓ 0 such that, for all

i = 1, . . . , n,

Pr (XiΠi > x± a(x)) ∼ Pr (XiΠi > x) . (4.6)
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We have

Pr

(
n∑

i=1

X+
i Πi > x

)
= Pr

(
n∑

i=1

X+
i Πi > x,

n⋃

i=1

(
X+
i Πi > x− a(x)

)
)

+ Pr

(
n∑

i=1

X+
i Πi > x,

n⋂

i=1

(
X+
i Πi ≤ x− a(x)

)
)

= I1(x) + I2(x). (4.7)

By (4.6),

I1(x) ≤
n∑

i=1

Pr (XiΠi > x− a(x)) ∼
n∑

i=1

Pr (XiΠi > x) .

For I2(x), by Lemma 4.1 we have

I2(x) =
n∑

k=1

Pr

(
n∑

i=1

X+
i Πi > x,X+

k Πk >
x

n
,

n⋂

i=1

(
X+
i Πi ≤ x− a(x)

)
)

≤
n∑

k=1

Pr

(
n∑

i=1,i 6=k
X+
i Πi > a(x),

x

n
< X+

k Πk ≤ x− a(x)

)

≤
n∑

k=1

n∑

i=1,i 6=k
Pr

(
XiΠi >

a(x)

n− 1
, XkΠk >

x

n

)

= o
(

Pr
(
XY >

x

n

))

= o
(
H(x)

)
.

Plugging these estimates for I1(x) and I2(x) into (4.7) yields relation (4.4).

Now we prove relation (4.5). By Bonferroni’s inequality we have

Pr

(
n∑

i=1

XiΠi > x

)
≥ Pr

(
n∑

i=1

XiΠi > x,

n⋃

k=1

(XkΠk > x+ a(x))

)

≥
n∑

k=1

Pr

(
n∑

i=1

XiΠi > x,XkΠk > x+ a(x)

)

−
∑

1≤k 6=l≤n
Pr

(
n∑

i=1

XiΠi > x,XkΠk > x+ a(x), XlΠl > x+ a(x)

)

≥
n∑

k=1

Pr (XkΠk > x+ a(x))

−
n∑

k=1

Pr

(
n∑

i=1

XiΠi ≤ x,XkΠk > x+ a(x)

)

−
∑

1≤k 6=l≤n
Pr (XkΠk > x+ a(x), XlΠl > x+ a(x))

= J1(x)− J2(x)− J3(x). (4.8)
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By (4.6),

J1(x) ∼
n∑

k=1

Pr (XkΠk > x) .

For each term in J2(x), by Lemma 4.1 we have

Pr

(
n∑

i=1

XiΠi ≤ x,XkΠk > x+ a(x)

)

≤ Pr

(
n∑

i=1,i 6=k
XiΠi ≤ −a(x), XkΠk > x+ a(x)

)

≤
n∑

i=1,i 6=k
Pr

(
XiΠi ≤ −

a(x)

n− 1
, XkΠk > x+ a(x)

)

= o
(
H(x)

)
.

Thus,

J2(x) = o
(
H(x)

)
.

It follows straightforwardly from Lemma 4.1 too that

J3(x) = o
(
H(x)

)
.

Plugging these estimates for J1(x), J2(x) and J3(x) into (4.8) yields relation (4.5).
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