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a b s t r a c t

Choosing committees with independent members in social networks can be regarded as a group selection

problem where independence, as the main selection criterion, can be measured by the social distance be-

tween group members. Although there are many solutions for the group selection problem in social networks,

such as target set selection or community detection, none of them have proposed an approach to select com-

mittee members based on independence as group performance measure. In this work, we propose a novel

approach for independent node group selection in social networks. This approach defines an independence

group function and a genetic algorithm in order to optimize it. We present a case study where we build a

real social network with on-line available data extracted from a Research and Development (R&D) public

agency, and then we compare selected groups with existing committees of the same agency. Results show

that the proposed approach can generate committees that improve group independence compared with ex-

isting committees.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction1

Organizations need representative individuals to make decisions2

about particular concerns. These representative individuals are ap-3

pointed in committees, and we expect from these members to makeQ3
4

decisions based on the benefit of the whole community they are5

representing, avoiding bias that could arise from closeness between6

them. In this context, the best committees are those which show the7

greatest independence between his members. How to choose these8

members based on objective criteria could be a difficult task, either9

because of the definition of the criteria or because of the analysis of10

the community from where members are chosen. Therefore, a com-11

mittee in which some of its members are closely related is an unbal-12

anced committee.13

Fig. 1 shows a graphical example of difference between balanced

Q4

14

and unbalanced committees that allow us to appreciate the distri-15

bution of selected nodes within a graph. A balanced distribution is16

essential to improve desirable features, such as independence. For in-17

stance, a committee to discuss about budget allocation must avoid bi-18

ased decisions by ensuring that committee members are not closely19

related.20
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As mentioned before, Fig. 1 shows a simple example of individu- 21

als and their dispersal. Fig. 2 shows a graphical representation of the 22

community used to evaluate this approach. This graph allows us to 23

understand the problem complexity and critical importance of choos- 24

ing the best committee members to maximize independence. 25

Initially, the committee member selection problem can be solved 26

by a mathematical combination, but the computational cost associ- 27

ated to this approach could be very high. For instance, given a com- 28

munity with n members, the maximal number of groups is given by 29

2n − 1, and complexity is O(2n). In addition, if committees are r size 30

groups, the number of possible solutions is given by applying bino- 31

mial coefficient nCr and complexity is O(n!). 32

If there is no polynomial function to solve the problem, an alterna- 33

tive could be to adopt a non deterministic approach to approximate 34

optimal solutions. For instance, a stochastic approach could produce 35

random solutions, and then apply an independence function to rank 36

these solutions. This approach is subjective because of the probabil- 37

ity in selecting random committee members, and because of the joint 38

probability of the committee. 39

However, the problem can be addressed by implementing some 40

optimization strategy to approximate optimal solutions, such as ge- 41

netic algorithms. A genetic algorithm could be implemented to search 42

for the greatest independence between committee members, but not 43

necessarily to guarantee the best solution. In other words, could be 44

enough to approximate an optimal solution. For committee selection Q5
45

problem, the best solutions will be determined by the maximal inde- 46

pendence between his members. 47
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(a) (b)

Fig. 1. Difference between balanced (a) and unbalanced (b) committees, where selected members are the largest 4.

Fig. 2. Graphical representation of the community used to evaluate the approach.

If we consider committee candidates as individuals connected48

with each other through ties, it is possible to determine which of49

these ties could be relevant to analyze independence. These individu-50

als and their relationship represent the basic elements of a social net-51

work; therefore, we can apply social network analysis to select com-52

mittee members with the greatest independence. However, a social53

network approach requires a social network, and data to represent its54

elements, such as actors, ties, kind of network, and analysis object.55

The current social network analysis techniques aim to identify the56

value or number of relations, roles or prominence of nodes, and to57

discover hidden groups or cohesive groups. The aim of this work is to58

present an alternative to the committee selection problem by choos-59

ing a set with maximal independence between members. To do this,60

we build a social network and then we define an independence group61

performance function and a genetic algorithm, to obtain n member62

committees with the greatest independence between members.63

The main contributions of this work are summarized as follows.64

(1) We propose an approach for the committee selection problem65

with independent members as a group selection problem in social66

networks. (2) We define a novel group independence performance67

function to assess group fitness in social networks. Then, such a mea-68

sure was optimized by means of a genetic algorithm. (3) We build69

a social network from a Research and Development (R&D) public70

agency with on-line available data. (4) We use such a social network71

to evaluate the proposed approach. Then, we compare results with 72

current committees of the same public agency. 73

This document is organized as follows. Section 2 describes the 74

construction process of the social network. Section 3 describes the 75

implementation of the genetic algorithm and the function to eval- 76

uate group independence. Section 4 describes a case study and the 77

configurations of the genetic algorithm, along with a discussion of the 78

experiment results. Section 5 presents a discussion of the current lit- 79

erature. Finally, Section 6 presents conclusions as well as future work. 80

2. Social network construction 81

In order to choose committee members, we propose to build a so- 82

cial network to calculate distances between candidates, and then ap- 83

ply a genetic algorithm to get potential committees with the greatest 84

distances between their members. 85

A social network is a set of individuals (actors) and relations (ties) 86

between them; the social network analysis is used to study structures 87

created by these relations and individuals. 88

We are particularly interested in the construction of a social net- 89

work for its ability to represent analysis criteria based on ties. To clar- 90

ify this concept, we built a network of researchers related through co- 91

authorship and workplace. In this network, actors are the researchers, 92

and ties are the criteria for calculating distance between each pair of 93

researchers. 94

As mentioned above, relations between actors define what can be 95

analyzed in the network. The aim of this analysis is to calculate dis- 96

tances between a set of actors. In order to do this, we built a consol- 97

idated graph. This graph contains every kind of relation proposed as 98

analysis criterion. Fig. 3 shows a unified graph from two kinds of re- 99

lations (coauthor and same workplace) of five researchers (A, B, C, D, 100

and E) where relations are binary (relation is present or not), undi- 101

rected (direction is meaningless), and irreflexive (a researcher does 102

not publish with himself or does not work with himself). 103

Our proposal is to establish the greatest independence between 104

committee members based on their distances. Thus, we need to cal- 105

culate distances between committee members, for which we use 106

the shortest path and geodesic distance (length of the shortest path) 107

(Freeman, 1977) over the unified graph. 108

The graph must be connected to apply this metrics, which means 109

that every actor must be reachable from every other actor in the net- 110

work. This can be determined through a reachability matrix, which 111

can be obtained through matrix multiplication (Wasserman & Faust, 112

1994). 113

Distances between each pair of actors is represented by a 114

proximity matrix, obtained by applying power to the matrix 115
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Fig. 3. Unified graph representing two kinds of relationships (coauthor and same workplace).

Fig. 4. Flow chart of the proposed approach showing inputs, datasources production, and processes related to the social network construction and the genetic algorithm definition.

representation of the unified graph. Proximity matrix contains input116

data for the algorithm whose aim is to choose a committee (a group117
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f actors) with the greatest independence between its members. In

his case, we work with a genetic algorithm which defines a function

o optimize this distance to the largest one.

Fig. 4 shows the proposed approach in a flow chart, in which in-

ividuals and independence criteria are the inputs. Then, we gener-

te the unified graph to determine relations between actors, and thus

o build the social network. Next, we build the proximity matrix by

alculating geodesic distances; then, the proximity matrix and the

etwork data are put together into the genetic algorithm to produce

ptimized solutions.

. Genetic algorithm definition

A genetic algorithm is a type of evolutionary algorithm that can be

onsidered as a function optimization method (Smith & Eiben, 2008).

ven though there is no definitive genetic algorithm, it is possible to

dapt one using representations and operators considered suitable to

he modeled problem. As an analogy of the biological model, chro-

osomes are the elements used in genetics algorithms to represent

onfigurations, which contain genetic information represented by lo-
ation and value of their genes. These chromosomes stand for solu-

ions to the modeled problem.

In order to choose a subset of actors from a social network, we

ave defined an ad-hoc function to calculate distances between com-

ittee members. Consequently, we have defined a genetic algorithm

o approximate solutions to an optimum by maximizing this function.

The development of a genetic algorithm requires defining repre-

entation, fitness function, parent selection and survivor selection

echanisms as well as mating and mutation operators. Next, we

resent selected configurations to the modeled problem.

F

t

w

Please cite this article as: E. Zamudio et al., Social networks and genetic al
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The problem requires defining a representation of the chromo-

ome. In this work, we do permutations of a vector of integers (chro-

osome), where each element references to only one node (gene). In

his vector, every node in the network under study is included. Thus,

chromosome has as many genes as a community has individuals.

lso, the participation in the committee is given by a vector with the

ame size as the vector of nodes, the vector of committee members,

n which every location is binary valued. Therefore, if value = 1, then

he node with same position in the vector of nodes must be included

n the committee, and if value = 0, then the node is excluded from the

ommittee. With this representation, a member appears only once in

given committee. It is important to note that in the modeled prob-

em the order of members is not relevant. Fig. 5 shows a graphical

epresentation of these vectors.

vector of nodes (chromosome)

vector of committee members

n-1 n1 2 3

1 01 0 0
1 = node (gene) inclusion in the committee

ig. 5. Representation of the genetic algorithm through a vector of nodes which con-

ains every node in the network under study, and a vector of committee members

hich indicates the elements of the vector of nodes to be included in the committee.

gorithms to choose committees with independent members, Expert
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3.2. Fitness function161

The aim of the fitness function is to calculate the solution value.162

In this work, we developed an ad-hoc fitness function to maximize163

distances, represented by the cumulative sum of distances between164

each pair of committee members. In order to get relative values, we165

consider the size of the committee and the network diameter. To im-166

prove results, we set a parameter to maximize minimum distances of167

the committees, defined as follows:168

f =

[(
k∑

i, j=0

d(i, j)

)/
k

]
+ m

2 ∗ D

Where d is the distance function between two members, ∀i, j/i �= j169

and i, j ∈ S, S represents the whole nodes set, k is the number of com-170

mittee members, m is the minimum distance between each pair of171

members in the committee, and D is the network diameter. As previ-172

ously established, it is necessary for the network to be connected.173

3.3. Parent selection174

The genetic information is obtained from the parents, which are175

chromosomes (solutions) of the previous generation. To this end,176

we need to define a strategy of parents selection by adopting one177

of the mechanisms suitable to the modeled problem. In this work,178

the mechanisms selected include Stochastic Universal Sampling (SUS)179

since we need to choose several parents from a community; and Tour-180

nament, since in both cases global fitness is unknown.181

3.4. Crossover182

Genetic information of new generations is determined by their183

parents. This process called genetic recombination is produced184

through crossover mechanisms. For instance, having two chromo-185

somes representing distinct solutions, crossover implies that the new186

generation inherit genetic information from both parents.187

To keep a valid permutation we have chosen recombination op-188

erators Partially Mapped Crossover (PMX) and Order Crossover (OX).189

Since the former is an algorithm designed for adjacency problems it190

is suitable to the modeled problem, and even though the latter is de-191

signed for order problems, the order in the second parent could be192
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This organization establishes committees for specific areas with dif- 210

ferent responsibilities. For instance, in the Informatics and Commu- 211

nications area there are 3 committees to evaluate Admissions, Reports, 212

and Fellowship awards. 213

The prospective committee members are chosen from a set of ex- 214

perts in the field that could be internal or external to the organization. 215

We calculated fitness for distinct configurations of the genetic al- 216

gorithm to propose committees based on the greatest distances. With 217

the same criteria, we calculated fitness for existing committees. 218

4.1. Dataset 219

The dataset used here to produce the social network based on re- 220

searchers (actors) information was built by applying web crawling, 221

which consists in gathering information from web pages. In this case, 222

we used basic information to characterize actors and their informa- 223

tion about contributions and workplaces in order to discover ties be- 224

tween those actors. This process required disambiguation of actors 225

and ties, since most of the information presented for every researcher 226

is produced by themselves, particularly contribution data. 227
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beneficial in new chromosome production.

3.5. Mutation

The other mechanism used in this work for genetic recombination

is mutation, which implies to alter the genes within a chromosome.

In permutations, mutation alters location of the values in the solution

vector of the new generation.

We have selected Swap Mutation and Insert Mutation, since both

operators are accepted to keep a valid permutation.

3.6. Survivor selection

Once a new generation is produced, the survivors must be selected

in order to keep the number of solutions in every generation.

We have selected Steady-state and Generational mechanisms to

keep solutions with the best fitness in the succeeding generations.

4. Case study

To evaluate the proposed approach, we decided to build a social

network based on public information about researchers published by

the National Council of Technical and Scientific Research (CONICET).
Please cite this article as: E. Zamudio et al., Social networks and genetic al
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In addition, not every actor in the network is considered as can-

idate. For the Informatics and Communication area there is a list of

ualified specialists that fulfill some requirements (i.e., to have a hier-

rchical degree), which means that only a limited set of actors qualify

s committee members.

Thus, the social network in the case study is composed by 1293

odes and 4322 ties, which produces 74 components (subgroups of

ctors disconnected from the rest of the network). From those com-

onents, the bigger one has 1058 (≈82%) actors (75 of them are qual-

fied specialist), and 3878 (≈90%) ties.

.2. Configuration

Having established the social network, we set up the genetic algo-

ithm to evaluate groups of actors with the largest distances between

hem, which we assume as an independence criterion. This configu-

ation has the following parameters:

• Community size: The number of solutions in every moment was

given by P/n, where P is the set of all researchers, and n the size of

the committees.
• Crossover probability: A generational parameter, selected from

range [0.6; 0.9].
• Mutation probability: A mutation operator parameter, selected

from range [0.01; 0.15].
• Stop condition: A generational parameter, set in 25 generations.
• Configurations: Sixteen different configurations emerged from

the combination of the selected mechanisms in this approach (se-

lection, mutation, and crossover). In addition, we use Steady-state

and Generational as selection mechanisms. Table 1 shows these

configurations.
• Runs: 40 runs produced by 5 runs per configuration. Average val-

ues and standard deviation (σ ) were calculated.

.3. Results

Here we show a fitness evaluation and social network centrality

etric values for current committees of the Informatics and Com-

unications area, and then we show results of the genetic algorithm

uns.

.3.1. Fitness of current committees

The current committees of the Informatics and Communications

rea had 6 members in 2014. In order to evaluate committee fitness

e initially decided to apply the fitness function to committee mem-

ers. This approach was modified since some members of the current
gorithms to choose committees with independent members, Expert

7.045
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Table 1

16 proposed configurations for the genetic algorithm describing operators and selection mechanisms.

Configuration Crossover Mutation Parent selection Survivor selection

PMX OX Swap Insert SUS Tournament Steady-state Generational

1 X X X X

2 X X X X

3 X X X X

4 X X X X

5 X X X X

6 X X X X

7 X X X X

8 X X X X

9 X X X X

10 X X X X

11 X X X X

12 X X X X

13 X X X X

14 X X X X

15 X X X X

16 X X X X

committees were not present in the dataset. This situation occurs be-268

cause of the low number of specialists in the area belonging to CON-269

ICET (actually there are 87 specialists in the Informatics and Com-270

munications area), which means that committees usually incorporate271

external researchers from other areas. Therefore, we have identified272

the current committees members present in the largest component273

of the proposed social network. In the Admissions committee, only274

3/6 members are present in the social network; in the Reports com-275

mittee, only 4/6 members are present in the social network; and in276

the Fellowship awards committee, only 5/6 members are present in277

the social network. Since names of the committee members are not278

relevant in this study, we enumerated members from 1 to 6 for each279

committee.280
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Table 2

Current Admissions, Reports, and Fellowship awardscommittees with each

degree, betweenness and closeness (last two metrics expressed in relative

values).

Committee Node Degree Betweenness Closeness

Admissions A1 49 0.05293 0.22404

(fitness = 0.65152) A2 21 0.02593 0.17283

A3 5 0.00001 0.15606
3A4 – – –
2A5 – – –
2A6 – – –

Reports R1 35 0.11858 0.20596

(fitness = 0.36364) R2 51 0.11909 0.25101

Configuration Average

fitness

(runs = 5)

σ Maximal fitness

(with the shortest

time in seconds)

1 0.58788 0.01134 0.59091 1.548 s.

2 0.57879 0.01134 0.59091 1.510 s.

3 0.60303 0.02607 0.65152 1.563 s.

4 0.60909 0.02938 0.66667 1.537 s.

5 0.61818 0.02938 0.65152 1.625 s.

6 0.62424 0.03090 0.66667 1.468 s.

7 0.62121 0.02710 0.65152 1.544 s.

8 0.62121 0.03711 0.66667 1.504 s.

9 0.72727 0.00000 0.72727 31.135 s.

10 0.64545 0.00742 0.65152 31.493 s.

11 0.72727 0.00000 0.72727 30.744 s.

12 0.67879 0.02607 0.72727 31.325 s.

13 0.70606 0.02642 0.72727 31.024 s.

14 0.63939 0.02607 0.66667 32.174 s.

15 0.67879 0.00606 0.68182 33.181 s.

16 0.61515 0.02642 0.65152 38.198 s.
The Admissions committee of the Informatics and Communication

rea has fitness =0.65152 for members A1–A3, since A4 is present in

nother component and A5 and A6 are not classified as specialists.

he other 2 committees are in similar situation. The Reports commit-

ee has fitness =0.36364 for members R1–R4, since the other mem-

ers of the committee do not belong to CONICET (R5) or are not clas-

ified as specialists in the area (R6). And the Fellowship awards has

tness =0.38636 for members F1–F5, since F6 does not belong to

ONICET. Table 2 shows current committee members with centrality

etric values for those members present in the largest component of

he social network.

.3.2. Social network metrics

The social network metrics for current committees shown in

able 2 can be compared with metrics of the whole component,

hich average degree =7.316, network diameter =11, and average

ath length =5.76. This indicates that almost every member (except

or F2) of current committees has degree over the average component

egree, but far away from the highest degree (80) in the component.

ome committee members (A3 and F2) show very low betweenness,

ut their closeness is more balanced between each other.

.3.3. Genetic algorithm runs

In order to compare the fitness of current committees with the fit-

ess of the members proposed by the genetic algorithm, we decided

o modify the genetic algorithm to generate committees of 3, 4, and 5

embers.

For the Admissions committee, we set up the genetic algorithm in

rder to produce committees with 3 members. Table 3 shows results

here maximal average fitness ≈0.72727 and minimal σ = 0 for con-

gurations 9 and 11. Maximal fitness ≈0.72727 was reached by con-

gurations 9, 11, 12, and 13, from which we infer that a local optimum

s reached in these cases.
Please cite this article as: E. Zamudio et al., Social networks and genetic al
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R3 37 0.03512 0.19495

R4 34 0.14864 0.20989
1R5 – – –
2R6 – – –

Fellowship awards F1 22 0.01246 0.15696

(fitness = 0.38636) F2 6 0.00001 0.16307

F3 19 0.00595 0.19317

F4 42 0.07272 0.22751

F5 46 0.06920 0.23731
1F6 – – –

1 Does not belong to CONICET.
2 Not marked as specialist.
3 Present in another component.

Table 3

Fitness of proposed configurations with average fitness, standard deviation, and max-

imal fitness for 3-member committees in 5 runs (best values in bold).
gorithms to choose committees with independent members, Expert

7.045
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Fig. 6. Average fitnesses of 3-member, 4-membe

Compared with current committee fitness ≈0.65152, maximal av-

erage fitness shows a fitness improvement of ≈8 points.

For the Reports committee, we set up the genetic algorithm in

order to produce committees with 4 members. Results show maxi-

mal average fitness ≈0.60606 and minimal σ = 0 for configuration

11. Maximal fitness ≈0.60606 was reached by configurations 9, 11,

and 15, from which we infer that a local optimum is reached in these

cases.

Compared with the current committee fitness ≈0.36364, maximal

average fitness shows a fitness improvement of ≈24 points.

For the Fellowship awards committee, we set up the genetic al-

gorithm in order to produce committees with 5 members. Results

show maximal average fitness ≈0.57091 for configuration 9, minimal

σ ≈0.00530 for configuration 4, and maximal fitness ≈0.59091 for

configurations 9 and 11.

Compared with current committee fitness ≈0.38636, maximal av-

erage fitness shows a fitness improvement of ≈20 points.

As shown in Fig. 6, Generational (configurations 9–16) selec-

tion mechanism produced better results than Steady-state (config-

urations 1–8), but Fig. 7 shows that Generational required more

time than other configurations. For instance, in 5-member commit-

tees, the minimal time for Steady-state =4.73 s. (seconds) and for

Generational =67.049 s. This situation is similar for 3-member and

Fig. 7. Shortest times of 3-member, 4-member,
Please cite this article as: E. Zamudio et al., Social networks and genetic al

Systems With Applications (2015), http://dx.doi.org/10.1016/j.eswa.2015.0
5-member committees for the 16 configurations.

-member committees. In order to reach the time required by Gen-

rational configurations, we extended Steady-state stop condition to

5, 000 generations, resulting always in lower fitnesses than those

btained with Generational mechanism configurations.

For 3-member and 5-member committees, configuration

presents the fullest average fitness, and for all committees, con-

gurations 9 and 11 show the highest maximal fitness values, from

hich we infer that in searching for optimal values in similar studies

e should prefer the Generational selection mechanism and the PMX

perator. In addition, in this case the mutation operator does not

roduce relevant differences. However, in bigger or more complex

etworks, computational cost improvement may be a requirement,

n which cases we should prefer Steady-state selection mechanism in-

tead of Generational selection mechanism. In addition, Fig. 8 shows

hat 3-member configurations 9 and 11 reached σ = 0, and that

-member and 4-member configuration 9 reached σ = 0, from

hich we infer the stability of these configurations, at least for

-member and 4-member committees.

Fig. 9 shows the social network built for the case study, in which

urrent committee members are closer than the best fitness com-

ittee members obtained in experimentation. This representation

hows a balance improvement of distances between the best fitness

ommittee members compared to current committee members.

member committees for the 16 configurations.
gorithms to choose committees with independent members, Expert
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Fig. 8. Standard deviations of 3-member, 4-member, and 5-member committees for the 16 configurations.

F mittees members (big black nodes) for 3-member (a), 4-member (b), and 5-member

(

ig. 9. Current committees members (big gray nodes) versus the best fitness com

c) committees.
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4.4. Discussion358

The proposed social network is intentionally simple about tie359

complexity and node complexity. Here, ties are binary edges, and360

nodes do not have attributes considered in the committee setup. On361

real scenarios, other criteria could be taken into account, such as362

node prominence, related topic, or skill, in searching to fulfill certain363

requirements.364

To test this approach, we used a new dataset based on public on-365

line available data. For simplicity, we built the social network starting366

from a set of specialists (those in the Informatics and Communication367

area), and then we created nodes and ties based on co-authorship368

and workplace information. To analyze other kind of specialists, social369

network should be built from all actors in the community or a new370

social network should be built starting from a new set of specialists371

from the area for which the committee is needed.372

5. Related work373

Previous work have contributed in the field of creating people374

committees applied to different areas, such as audit (Abbott & Parker,375
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Everett & Borgatti, 2010). KPP identifies key player sets with two 421

different approaches, KPP-Neg and KPP-Pos. KPP-Neg searches for 422

key players sets that if removed will disrupt the network. KPP-Pos 423

searches for key players sets optimally connected to all other nodes 424

in a network. The main difference with this work is on the structural 425

property, since KPP-Pos uses set cohesion and KPP-Neg uses closeness 426

centrality. Also, the authors suggest some evolutionary strategies for 427

function optimization. 428

An early effort on maximizing the impact in social networks is 429

presented in Liberman and Wolf (1997) that proposes a strategy to 430

increase impact of information flow on scientific communities. This 431

work has historical value, but it shows that similar problems in social 432

networks have had different names over time. 433

Current literature about community detection problem shows a 434

growing interest in topics such as social circles, topic models, or 435

complex networks. However, there still are community detection 436

approaches mainly based on structural properties. Bhattacharyya 437

and Bickel (2014) use graph distances to detect communities in 438

graphs by using a block model approach. The authors use geodesic 439

distances which have underlying problems, such as the impossi- 440

bility to measure geodesic distances in unconnected graphs. The 441
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t 463
2000), board directors (Shivdasani & Yermack, 1999; Westphal &

Zajac, 1995), or public agencies (Loewenberg, Patterson, & Jewell,

1985). Some approaches have been focused on the diversity of the

members (Aksela & Laaksonen, 2006; Hadjitodorov, Kuncheva, &

Todorova, 2006; Kuncheva, 2005; Kuncheva & Whitaker, 2003; Shin

& Sohn, 2005; Zouari, Heutte, & Lecourtier, 2005), while other ap-

proaches have been based different voting techniques (Bock, Day, &

McMorris, 1998; Fishburn, 1981; Gehrlein, 1985). However, to the

best of our knowledge there are no precedents in committee selec-

tions with independent members by using social networks.

Choosing committees with independent members in social net-

works can be regarded a group selection problem. Generally, this

problem includes node group selection, structural consideration such

as cohesion or centrality measures, and some optimization strategy

since most of them are classified as NP problems.

Two well-known group selection problems in social networks are

the target set selection problem and the community detection prob-

lem, however these problems present some differences with com-

mittee selection problem. The target set selection problem aims to

select nodes that maximize influence in order to spread something

in a network, such as information. Here, the focus is on the net-

work, since the problem is determined by which set of nodes in-
crease the influence. The community detection problem aims to dis-

cover node sets based on node relations or structural properties.

Here, the focus is on the set and its internal structural properties,

since the problem is determined by which nodes belong to a group or

community.

However, committee member selection problem focuses on the

group and the network, since the group considers relations be-

tween committee members and the group independence considers

the whole network.

Current literature about target set selection problem shares some

elements with this work. Wang, Deng, Zhou, and Jiang (2014) develop

a set-based coding genetic algorithm (SGA) that converges in proba-

bility to the problem optimal solution. Here, the authors code chro-

mosomes as sets, and choose operators based on the chromosome

representation. However, SGA mainly differs with this work in the use

of diffusion dynamics to measure performance. Cao, Wu, Wang, and

Hu (2011) propose a transformation of the target selection problem

into an optimal resource allocation problem. Here, the authors make

use of the modular structural property of social networks, and pro-

pose a dynamic programming algorithm to solve the problem, which

was proved to be NP-hard.

Similar to the target set selection problem is the key player prob-

lem (KPP) (Ballester, Calvó-Armengol, & Zenou, 2006; Borgatti, 2006;

s 464

P
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uthors solve this constraint by replacing distances of discon-

ected pair of nodes with the largest geodesic distance in the

raph.

About the use of genetic algorithms as an optimization strat-

gy for community detection, Freeman (1993) presents a review of

he group selection problem and recognizes the computation con-

traint of uncovering groups based on proximity matrix representa-

ion. He also recognizes the need for a search strategy, therefore he

roposes a simple genetic algorithm. The main differences with our

ork are in the chromosome representation and in the fitness func-

ion, which uses the proximity matrix information and a binary node

lassification.

As a precedent on using a structural approach to select people

roups, Burt (1978) proposes a process that uses sociometric mea-

ures for sampling firm representatives of interlocking directorates

o overcome profit constraints of an industry.

We found other areas that use distance as social network struc-

ural property for group selection. For instance, in the recommen-

ation area, Hwang, Wei, and Liao (2010) suggest articles based

n a co-authorship network and different schemes to measure the

loseness of author sets. Here, the social network graph representa-

ion includes directed and valued ties which affect closeness mea-

ure implementation. In the social network analysis homophily area,
reciado, Snijders, Burk, Stattin, and Kerr (2012) take geographical 465

roximity as distance in order to analyze likelihood of friendship ex- 466

stence and dynamics within social networks. A related approach is 467

resented by Morgan and Carley (2011, 2014) which uses social dis- 468

ance as part of an impact factor set to candidate selection for hiring 469

rocesses. 470

As another group selection approach, Wi, Mun, Oh, and Jung 471

2009a, 2009b) use social network structural properties along with 472

enetic algorithms. The authors propose a quantitative method for 473

he team member selection problem based on knowledge and col- 474

aboration of candidates. This problem aims to select teams based on 475

bilities of candidates to fulfill project requirements and to predict 476

eam performance. Network structural properties are used to mea- 477

ure familiarity between candidates which is translated in what they 478

all knowledge competence. Also, they use structural properties to 479

elect project managers from teams. 480

A previous work that uses geodesic paths as structural property 481

or group selection (Kolaczyk, Chua, & Barthélemy, 2009) proposes a 482

etric called co-betweenness, which extends betweenness centrality 483

o sets of nodes in order to measure the information flow of the set. 484

o-betweenness considers the geodesic paths that pass through all 485

odes in the set. 486

gorithms to choose committees with independent members, Expert

7.045

http://dx.doi.org/10.1016/j.eswa.2015.07.045


E. Zamudio et al. / Expert Systems With Applications xxx (2015) xxx–xxx 9

ARTICLE IN PRESS
JID: ESWA [m5G;August 31, 2015;19:9]

Out of the social network scope, some works in artificial intelli-487

gence use a committee based concept to select other kinds of groups,488

such as classification (Aksela, 2003; Argamon-Engelson & Dagan,489

1999; Li, Zou, Hu, Wu, & Yu, 2013; Wang & Wang, 2006; Zheng, 1998)490

or clustering (Hadjitodorov et al., 2006; Tao, Ma, & Qiao, 2013).491

6. Conclusions492

A novel social network approach to the committee member selec-493

tion problem has been proposed. This approach consists in a mech-494

anism that models the problem as a social network group selection495

problem.496

In this group selection problem for committee member selection,497

independence is the main selection criterion, for which a novel group498

independence function is defined. This group independence func-499

tion uses geodesic distances to measure social distances between all500

node pairs in the social network. Also, a genetic algorithm is defined501

to generate committee candidates. Then, the group independence502

function is maximized to choose candidate groups with the best503

fitness.504

A case study is presented where the proposed approach is applied505

to a real social network. The social network was built with on-line506

available data extracted from a public R&D funding agency. Further,507

results were compared with current committees of the same agency.508

Results show that the proposed approach can generate committees509

that improve group independence compared to the current commit-510

tee performances.511

Assisting committee selection processes may be the greatest com-512

petitive advantage offered by the proposed approach, since we have513

proved that the best performance groups can be selected within514

seconds for a real scenario. Also, alternative group selections can515

be preferred by experts in charge for committee appointments.516

Moreover, this work is built upon a simple infrastructure because517

there are many genetic algorithm implementations, and social net-518

work manipulation software, that allow the implementation and519

the execution of the approach in standard hardware and software520

configurations. As practical usage, this approach can be implemented521

in recommendation processes to propose alternative group selec-522

tions, or even group member replacements in order to improve group523

performances. Also, this approach can be used in opinion polls where524

there is a need to select less related respondents, such as focus525

groups.526

Although this approach is presented as a simple alternative to the527

committee selection problem, there still are some limitations. These528

limitations include an underlying problem, which implies that the529

geodesic distances must be calculated between every node pair in530

the network. Another limitation of the geodesic distance as under-531

lying measure is that distance between nodes from different com-532

ponents cannot be determined. Also, despite the proposed genetic533

algorithm returns the best performance solutions, it is still an ap-534

proximation strategy to the global optimum. Finally, the proposed535

approach is intentionally designed for simple social networks with536

undirected and unvalued ties, therefore its application in other sce-537

narios, such as complex networks, may require some modifications.538

Future works aim to test the proposed approach in other domains539

that require committee member selection. Despite this approach uses540

a simple network representation, more complex committee member541

selection processes may include criteria other than the group inde-542

pendence, therefore future works may include multiple criteria in543

group selection for the committee member selection problem. Fur-544

ther, other optimization strategies could be evaluated, particularly for545

scalability scenarios. Moreover, a complex social network representa-546

tion will allow to include other kinds of network properties, such as547

directed ties or node attributes.548

References 549

Abbott, L. J., & Parker, S. (2000). Auditor selection and audit committee 550
characteristics. AUDITING: A Journal of Practice & Theory, 19(2), 47–66. 551
doi:10.2308/aud.2000.19.2.47. 552

Aksela, M. (2003). Comparison of classifier selection methods for improving 553
committee performance. In Multiple Classifier Systems (pp. 84–93). Springer. 554
http://link.springer.com/chapter/10.1007/3-540-44938-8_9. Q8555

Aksela, M., & Laaksonen, J. (2006). Using diversity of errors for selecting 556
members of a committee classifier. Pattern Recognition, 39(4), 608–623. 557
doi:10.1016/j.patcog.2005.08.017. 558

Argamon-Engelson, S., & Dagan, I. (1999). Committee-based sample selection for 559
probabilistic classifiers. Journal of Artificial Intelligence Research, 11, 335–360. 560
doi:10.1613/jair.612. 561

Ballester, C., Calvó-Armengol, A., & Zenou, Y. (2006). Who’s who in networks. 562
wanted: the key player. Econometrica, 74(5), 1403–1417. doi:10.1111/j.1468- 563
0262.2006.00709.x. 564

Bhattacharyya, S., & Bickel, P. J. (2014). Community detection in networks using graph 565
distance arXiv:1401.3915 [cs, stat], Netherlands. 566

Bock, H.-H., Day, W. H., & McMorris, F. (1998). Consensus rules for committee elections. 567
Mathematical Social Sciences, 35(3), 219–232. doi:10.1016/S0165-4896(97)00033-4. 568

Borgatti, S. P. (2006). Identifying sets of key players in a social network. 569
Computational & Mathematical Organization Theory, 12(1), 21–34. 570
doi:10.1007/s10588-006-7084-x. 571

Burt, R. S. (1978). A structural theory of interlocking corporate directorates. Social Net- 572
works, 1(4), 415–435. doi:10.1016/0378-8733(78)90006-0. 573

Cao, T., Wu, X., Wang, S., & Hu, X. (2011). Maximizing influence spread in modular social 574
networks by optimal resource allocation. Expert Systems with Applications, 38(10), 575
13128–13135. doi:10.1016/j.eswa.2011.04.119. 576

Everett, M. G., & Borgatti, S. P. (2010). Induced, endogenous and exogenous centrality. 577
Social Networks, 32(4), 339–344. doi:10.1016/j.socnet.2010.06.004. 578

Fishburn, P. C. (1981). Majority committees. Journal of Economic Theory, 25(2), 255–268. 579
doi:10.1016/0022-0531(81)90005-3. 580

Freeman, L. C. (1977). A set of measures of centrality based on betweenness. Sociometry, 581
40(1), 35–41. doi:10.2307/3033543. 582

Freeman, L. C. (1993). Finding groups with a simple genetic algorithm. Journal of Math- 583
ematical Sociology, 17(4), 227–241. doi:10.1080/0022250X.1993.9990109. 584

Gehrlein, W. V. (1985). The Condorcet criterion and committee selection. Mathematical 585
Social Sciences, 10(3), 199–209. doi:10.1016/0165-4896(85)90043-5. 586

Hadjitodorov, S. T., Kuncheva, L. I., & Todorova, L. P. (2006). Moderate di- 587
versity for better cluster ensembles. Information Fusion, 7(3), 264–275. 588
doi:10.1016/j.inffus.2005.01.008. 589

Hwang, S.-Y., Wei, C.-P., & Liao, Y.-F. (2010). Coauthorship networks and academic liter- 590
ature recommendation. Electronic Commerce Research and Applications, 9(4), 323– 591
334. doi:10.1016/j.elerap.2010.01.001. 592

Kolaczyk, E. D., Chua, D. B., & Barthélemy, M. (2009). Group betweenness and co- 593
betweenness: inter-related notions of coalition centrality. Social Networks, 31(3), 594
190–203. doi:10.1016/j.socnet.2009.02.003. 595

Kuncheva, L. I. (2005). Using diversity measures for generating error-correcting 596
output codes in classifier ensembles. Pattern Recognition Letters, 26(1), 83–90. 597
doi:10.1016/j.patrec.2004.08.019. 598

Kuncheva, L. I., & Whitaker, C. J. (2003). Measures of diversity in classifier ensembles 599
and their relationship with the ensemble accuracy. Machine learning, 51(2), 181– 600
207. doi:10.1023/A:1022859003006. 601

Li, L., Zou, B., Hu, Q., Wu, X., & Yu, D. (2013). Dynamic classifier en- 602
semble using classification confidence. Neurocomputing, 99, 581–591. 603
doi:10.1016/j.neucom.2012.07.026. 604

Liberman, S., & Wolf, K. B. (1997). The flow of knowledge: scientific contacts in formal 605
meetings. Social Networks, 19(3), 271–283. doi:10.1016/S0378-8733(96)00303-6. 606

Loewenberg, G., Patterson, S. C., & Jewell, M. E. (1985). Handbook of legislative research 607
(1st ed.). Cambridge, MA: Harvard University Press. 608

Morgan, G. P., & Carley, K. M. (2011). Exploring the impact of a stochastic hiring function 609
in dynamic organizations. In Proceedings of BRIMS (pp. 106–113). 610

Morgan, G. P., & Carley, K. M. (2014). Comparing hiring strategies in a committee with 611
similarity biases. Computational and Mathematical Organization Theory, 20(1), 1–19. 612
doi:10.1007/s10588-012-9130-1. 613

Preciado, P., Snijders, T. A. B., Burk, W. J., Stattin, H., & Kerr, M. (2012). Does proximity 614
matter? Distance dependence of adolescent friendships. Social Networks, 34(1), 18– 615
31. doi:10.1016/j.socnet.2011.01.002. 616

Shin, H., & Sohn, S. (2005). Selected tree classifier combination based on 617
both accuracy and error diversity. Pattern Recognition, 38(2), 191–197. 618
doi:10.1016/j.patcog.2004.06.008. 619

Shivdasani, A., & Yermack, D. (1999). CEO involvement in the selection of new 620
board members: an empirical analysis. The Journal of Finance, 54(5), 1829–1853. 621
doi:10.1111/0022-1082.00168. 622

Smith, J. E., & Eiben, A. E. (2008). Introduction to evolutionary computing. Springer. 623
Tao, H., Ma, X.-p., & Qiao, M.-y. (2013). Subspace selective ensemble algorithm based 624

on feature clustering. Journal of Computers, 8(2). doi:10.4304/jcp.8.2.509-516. 625
Wang, C., Deng, L., Zhou, G., & Jiang, M. (2014). A global optimization algo- 626

rithm for target set selection problems. Information Sciences, 267, 101–118. 627
doi:10.1016/j.ins.2013.09.033. 628

Wang, X., & Wang, H. (2006). Classification by evolutionary ensembles. Pattern Recog- 629
nition, 39(4), 595–607. doi:10.1016/j.patcog.2005.09.016. 630

Wasserman, S., & Faust, K. (1994). Social network analysis: Methods and applications. 631
Cambridge University Press. 632

Please cite this article as: E. Zamudio et al., Social networks and genetic algorithms to choose committees with independent members, Expert

Systems With Applications (2015), http://dx.doi.org/10.1016/j.eswa.2015.07.045

http://dx.doi.org/10.2308/aud.2000.19.2.47
http://link.springer.com/chapter/10.1007/3-540-44938-8_9
http://dx.doi.org/10.1016/j.patcog.2005.08.017
http://dx.doi.org/10.1613/jair.612
http://dx.doi.org/10.1111/j.1468-0262.2006.00709.x
http://dx.doi.org/10.1016/S0165-4896(97)00033-4
http://dx.doi.org/10.1007/s10588-006-7084-x
http://dx.doi.org/10.1016/0378-8733(78)90006-0
http://dx.doi.org/10.1016/j.eswa.2011.04.119
http://dx.doi.org/10.1016/j.socnet.2010.06.004
http://dx.doi.org/10.1016/0022-0531(81)90005-3
http://dx.doi.org/10.2307/3033543
http://dx.doi.org/10.1080/0022250X.1993.9990109
http://dx.doi.org/10.1016/0165-4896(85)90043-5
http://dx.doi.org/10.1016/j.inffus.2005.01.008
http://dx.doi.org/10.1016/j.elerap.2010.01.001
http://dx.doi.org/10.1016/j.socnet.2009.02.003
http://dx.doi.org/10.1016/j.patrec.2004.08.019
http://dx.doi.org/10.1023/A:1022859003006
http://dx.doi.org/10.1016/j.neucom.2012.07.026
http://dx.doi.org/10.1016/S0378-8733(96)00303-6
http://dx.doi.org/10.1007/s10588-012-9130-1
http://dx.doi.org/10.1016/j.socnet.2011.01.002
http://dx.doi.org/10.1016/j.patcog.2004.06.008
http://dx.doi.org/10.1111/0022-1082.00168
http://dx.doi.org/10.4304/jcp.8.2.509-516
http://dx.doi.org/10.1016/j.ins.2013.09.033
http://dx.doi.org/10.1016/j.patcog.2005.09.016
http://dx.doi.org/10.1016/j.eswa.2015.07.045


10 E. Zamudio et al. / Expert Systems With Applications xxx (2015) xxx–xxx

ARTICLE IN PRESS
JID: ESWA [m5G;August 31, 2015;19:9]

633
634
635
636
637
638
639
640
641

Z 642
643
644

Z 645
646
647
Westphal, J. D., & Zajac, E. J. (1995). Who shall govern? CEO/board power, demographic
similarity, and new director selection. Administrative Science Quarterly, 40(1), 60.

doi:10.2307/2393700.
Wi, H., Mun, J., Oh, S., & Jung, M. (2009a). Modeling and analysis of project team forma-

tion factors in a project-oriented virtual organization (ProVO). Expert Systems with
Applications, 36(3, Part 2), 5775–5783. doi:10.1016/j.eswa.2008.06.116.

Wi, H., Oh, S., Mun, J., & Jung, M. (2009b). A team formation model based on
knowledge and collaboration. Expert Systems with Applications, 36(5), 9121–9134.

doi:10.1016/j.eswa.2008.12.031.
Please cite this article as: E. Zamudio et al., Social networks and genetic al

Systems With Applications (2015), http://dx.doi.org/10.1016/j.eswa.2015.0
heng, Z. (1998). Naive Bayesian classifier committees. In Naive Bayesian classifier
committees. Springer. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.

53.3003&rep=rep1&type=pdf.
ouari, H., Heutte, L., & Lecourtier, Y. (2005). Controlling the diversity in classifier en-

sembles through a measure of agreement. Pattern Recognition, 38(11), 2195–2199.
doi:10.1016/j.patcog.2005.02.012.
gorithms to choose committees with independent members, Expert

7.045

http://dx.doi.org/10.2307/2393700
http://dx.doi.org/10.1016/j.eswa.2008.06.116
http://dx.doi.org/10.1016/j.eswa.2008.12.031
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.53.300310rep=rep110type=pdf
http://dx.doi.org/10.1016/j.patcog.2005.02.012
http://dx.doi.org/10.1016/j.eswa.2015.07.045

	Social networks and genetic algorithms to choose committees with independent members
	1 Introduction
	2 Social network construction
	3 Genetic algorithm definition
	3.1 Representation
	3.2 Fitness function
	3.3 Parent selection
	3.4 Crossover
	3.5 Mutation
	3.6 Survivor selection

	4 Case study
	4.1 Dataset
	4.2 Configuration
	4.3 Results
	4.3.1 Fitness of current committees
	4.3.2 Social network metrics
	4.3.3 Genetic algorithm runs

	4.4 Discussion

	5 Related work
	6 Conclusions
	 References


