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BAT algorithm is proposed in this paper for optimal tuning of PI controllers for load frequency controller
(LFC) design. The problem of robustly tuning of PI based LFC design is formulated as an optimization
problem according to time domain objective function that is solved by BAT algorithm to find the most
optimistic results. To demonstrate the effectiveness of the proposed method, a two-area interconnected
power system is considered as a tested system. To ensure robustness of the proposed control strategy to
stabilize frequency oscillations, the design process takes a wide range of operating conditions and system
nonlinearities into account. The simulation results are given to detect the superiority of BAT algorithm
over Simulated Annealing (SA) in tuning PI controller parameters through different indices. Results eval-
uation show that the proposed algorithm achieves good robust performance for wide range of system
parameters and load changes compared with SA.

� 2015 Elsevier Ltd. All rights reserved.
Introduction

In the large scale electric power systems with interconnected
areas, Load Frequency Control (LFC) plays an important role. The
LFC is aimed to maintain the system frequency of each area and
the inter-area tie line power within tolerable limits to deal with
the fluctuation of load demands and system disturbances [1,2].
These important functions are delegated to LFC due to the fact that
a well-designed power system should keep voltage and frequency
in scheduled range while providing an acceptable level of power
quality [3,4].

During the last decades several researches and techniques had
been applied to the field of LFC. Robust control [5–12], pole place-
ment approach [13,14], variable structure control [15], and state
feedback [16], are used to deal with LFC problem design. These
strategies have some disadvantages such as high order controller,
difficulty, complexity and inapplicable to implement. In an effort
to overcome aforementioned disadvantages, several researches
have used Artificial Intelligence (AI) approaches such as Fuzzy
Logic Controller (FLC) [17–23] and Artificial Neural Network
(ANN) [24–27]. Although these methods are effective in dealing
with the nonlinear characteristics of power system, they require
extensive computation. For example, FLC has to deal with fuzzifica-
tion, rule base storage, inference mechanism, and defuzzification
operations. For ANN, the large amount of data required for training
are a major source of constraint. Clearly, a low-cost processor can-
not be employed in such a system.

An alternative approach is to employ Evolutionary Algorithm
(EA) techniques. Due to its ability to handle nonlinear objective
functions, EA is visualized to be very effective to deal with LFC
problem. Among the EA techniques, Genetic Algorithm (GA) [28–
33], Particle Swarm Optimization (PSO) [34–38], Ant Colony Opti-
mization (ACO) [39], Bacteria Foraging (BF) [40–44] and Artificial
Bee Colony (ABC) [45,46] have attracted the attention in LFC con-
troller design. However, these algorithms appear to be effective
for the design problem, they pain from slow convergence in refined
search stage, weak local search ability and may lead to possible
entrapment in local minimum solutions. Recently, a new evolu-
tionary computation algorithm, called BAT algorithm has been pre-
sented by [47] and further established recently by [48–53]. It is a
very simple and robust population based optimization algorithm.
Moreover, it requires less control parameters to be tuned. Hence,
it is suitable optimization tool for power system controller design.

This paper proposes BAT algorithm for optimal tuning of PI con-
trollers. The motivation behind this research is to ensure and prove
the robustness of BAT based PI controller in enhancing the perfor-
mance of both frequency deviation and tie line power under vari-
ous loading conditions in presence of system nonlinearities.
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Nomenclature

f the system frequency in Hz
i subscript referring to area (i = 1, 2)
Ri the regulation constant (Hz/p.u MW) for area i
Tgi the speed governor time constant in second for area i
Tti the turbine time constant in second for area i
Tri the reheat time constant in second for area i
Kri the p.u megawatt rating of high pressure stage for

area i
Tw the hydro turbine time constant
TPi, KPi the time constant and gain of power system respec-

tively for area i
DPtiei the difference between the actual tie-line power and

scheduled one
B the biasing factor in pu MW/Hz
KPPi;K IIi the gains of PI controller of area i
N the number of area in power systems
tsim the simulation time in second
t time in second
Tij synchronizing coefficient
J objective function
Ui the control signal of area i
Ki the controller of area i
Kmin
PPi , K

max
PPi the lower and the upper limit of proportional gain of

area i
Kmin
IIi , Kmax

IIi the lower and the upper limit of Integral gain of area i
xi the position of each bat

vi the velocity of each bat
Lt the mean loudness
xti the new position
v t
i the new velocity

Fmin, Fmax the minimum and maximum frequency

List of abbreviations
LFC load frequency control
GA Genetic Algorithm
PSO Particle Swarm Optimization
AI Artificial Intelligence
FLC Fuzzy Logic Controller
ANN Artificial Neural Network
ACO Ant Colony Optimization
BF Bacteria Foraging
ABC Artificial Bee Colony
PI Proportional plus Integral
GRC Generation Rate Constraint
ACE Area Control Error
IAE the Integral of Absolute value of the Error
ITAE the Integral of the Time multiplied Absolute value of

the Error
ISE the Integral of Square Error
ITSE the Integral of Time multiply Square Error
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Two area power system

A two area model of a hydrothermal power station including
nonlinearities is shown in Fig. 1. Area 1 is reheat thermal system
and area 2 is a hydro system [39]. The steam chest time constant
which is related to the non-reheat stage ranges from 0.1 to 0.5 s
Fig. 1. Block diagram o
whereas the time constant for the reheat stage ranges from 4 to
10 s. Nonlinearities are represented in Generation Rate Constraint
(GRC) and governor dead band. The first one as its name implies
GRC that illustrates the limitation on the generation rate due to
the limitation of thermal and mechanical movements [4], for ther-
mal stations it is taken to be 0.1 pu Mw per minute. The second
f two area system.
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Fig. 2. BAT search algorithm flow chart.
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nonlinearity is defined as the total magnitude of a sustained speed
change; within which there is no resulting change in valve posi-
tion. All types of governors have a dead band in response, which
is important for power system frequency control in the presence
of disturbances; here it is taken to be 0.0005. The system parame-
ters are given in Appendix. The transfer functions of different
blocks used in power system model are given below:

Transfer function of hydraulic turbine is
�TwSþ 1
0:5TwSþ 1

ð1Þ
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Transfer function of governor is

1
TgSþ 1

ð2Þ

Transfer function of steam turbine is

KrTrSþ 1
TrSþ 1

ð3Þ

Transfer function of reheater is

1
T1Sþ 1

� �
1þ T2S
1þ T3S

� �
ð4Þ

and transfer function of generator is

Kp

TpSþ 1
ð5Þ
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For the ith area, the Area Control Error (ACE) signal made by fre-
quency and tie-line power deviations is given by:

ACEi ¼ B � Df i þ DPtiei ð6Þ
Optimization techniques

Overview of BAT search algorithm

BAT search algorithm is an optimization algorithm, inspired by
the echolocation behavior of natural bats in locating their foods. It
is introduced by Yang [47,48] and is used for solving various opti-
mization problems. Each virtual bat in the initial population
employs a homologous manner by performing echolocation way
for updating its position. Bat echolocation is a perceptual system
in which a series of loud ultrasound waves are released to create
echoes. These waves are returned with delays and various sound
levels which qualify bats to discover a specific prey. Some rules
are investigated to extend the structure of BAT algorithm and use
the echolocation characteristics of bats [49,50].

(a) Each bat utilizes echolocation characteristics to classify
between prey and barrier.

(b) Each bat flies randomly with velocity v i at position xi with a
fixed frequency Fmin, varying wavelength k and loudness L0
to seek for prey. It regulates the frequency of its released
pulse and adjust the rate of pulse release r in the range of
[0, 1], relying on the closeness of its aim.

(c) Frequency, loudness and pulse released rate of each bat are
varied.

(d) The loudness Literm changes from a large value L0 to a mini-
mum constant value Lmin.

The position xi and velocity v i of each bat should be defined and
updated during the optimization process. The new solutions xti and
velocities v t

i at time step t are performed by the following equa-
tions [51–53]:

Fi ¼ Fmin þ ðFmax � FminÞa ð7Þ

v t
i ¼ v t�1

i þ ðxti � x�ÞFi ð8Þ

xti ¼ xt�1
i þ v t

i ð9Þ
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Fig. 5. Change in f 1 due to 5% step increase in demand of the second area.
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Fig. 6. Change in f 2 due to 5% step increase in demand of the second area.
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where a in the range of [0, 1] is a random vector drawn from a uni-
form distribution. x� is the current global best location, which is
achieved after comparing all the locations among all the n bats.
As the product kif i is the velocity increment, one can consider either
Fi (or ki) to set the velocity change while fixing the other factor. For
implementation, every bat is randomly assigned a frequency which
is drawn uniformly from ðFmin; FmaxÞ. For the local search, once a
solution is chosen among the current best solutions, a new solution
for each bat is generated locally using random walk.

xnew ¼ xold þ eLt ð10Þ

where e 2 ½�1;1� is a random number, while Lt is the mean loud-
ness of all bats at this time step. As the loudness usually decreases
once a bat has found its prey, while the rate of pulse emission
increases, the loudness can be selected as any value of convenience.
Assuming Lmin ¼ 0 means that a bat has just found the prey and
temporarily stop emitting any sound, one has:

Ltþ1
i ¼ bLti ; rtþ1

i ¼ r0i ½1� expð�ctÞ� ð11Þ
where b is constant in the range of [0, 1] and c is positive constant.
As time reach infinity, the loudness tends to be zero, and cti equal to
c0i . The flow chart of BAT algorithm is shown in Fig. 2, and the
parameters are given in Appendix.

Overview of Simulated Annealing (SA) algorithm

Simulated Annealing (SA) is an optimization algorithm that
belongs to the field of stochastic optimization and metaheuristics.
SA is inspired by the process of annealing in metallurgy [54]. In this
natural process a material is heated and slowly cooled under
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Fig. 7. Change in ACE1 due to 5% step increase in demand of the second area.
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Fig. 8. Change in ACE2 due to 5% step increase in demand of the second area.
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controlled conditions to increase the size of the crystals in the
material and minimize their defects. This has the effect of enhanc-
ing the strength and durability of the material. The heat increases
the energy of the atoms allowing them to move freely and the slow
cooling schedule allows a new low-energy configuration to be
discovered and exploited [55]. Fig. 3 shows the flow chart of SA.

In SA, the temperature is the control parameter that is reduced
as the algorithm continues. It determines the probability of accept-
ing a worse solution at any step and is used to limit the extent of
the search in a given dimension [56]. The annealing schedule is
the rate by which the temperature is reduced as the algorithm con-
tinues. The slower the rate of decrease, the better the chance of
finding an optimal solution, the longer the run time. The efficiency
and convergence of SA are depending on initial value of tempera-
ture, temperature function, the rate of temperature decline and
maximum iteration [57,58].

Objective function

For the two area considered in this study, the conventional inte-
gral controller was replaced by a PI controller with the following
structure:

KiðSÞ ¼ KPPi þ K IIi

S
; ð12Þ

The control signal for PI controller can be given in the following
equation:

UiðSÞ ¼ �KiðSÞ � ACEiðSÞ ð13Þ
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Fig. 9. Change of control signal for 5% step increase in demand of the second area.
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Now a performance index is taken to minimize the sum squared
error of frequency of both areas and tie power. Hence, a perfor-
mance index J can be defined as:

J ¼
Z tsim

0
Df 21 þ Df 22 þ DP2

tie

� �
dt ð14Þ

It is aimed to minimize this objective function in order to
improve the system response in terms of the settling time and
overshoots. The design problem can be formulated as the following
constrained optimization problem, where the constraints are the PI
controller parameter bounds. So minimize J subject to:

Kmin
PPi 6 KPPi 6 Kmax

PPi ;

Kmin
IIi 6 K IIi 6 Kmax

IIi :
ð15Þ
Typical ranges of the optimized parameters are [�2 to 10]. This
paper employs BAT technique to solve the above optimization
problem and seek for optimal set of PI controller parameters to
improve the overall system dynamical performance of the pro-
posed system.
Results and simulations

In this section, different comparative cases are examined to
confirm the effectiveness of the proposed BAT algorithm for tuning
controller parameters. Fig. 4 shows the change of objective func-
tions with two optimization algorithms. The objective functions
decrease over iterations of BAT and SA. Moreover, BAT converges
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at a faster rate (45 generations) compared with that for SA (64
generations).

Step increase in demand of the second area (DPD2)

A 5% step increase in demand of the second area (DPD2) is
applied at operating point 1 as the first test case. The frequency,
ACE deviation of the both areas and control signal of second area
are shown in Figs. 5–9. In these figures, the response with SA is suf-
fered from high settling time and undesirable oscillations. Also
compared with SA, the proposed method is indeed more efficient
in enhancing the damping characteristic of power system. Hence,
stability of the system is maintained and power system oscillations
are effectively attenuated with the application of the BAT based
controller.

Step increase in demand of both area simultaneously

In this case, a 0.05 step increase in demand of the first area
(DPD1) and second area (DPD2) simultaneously is applied at operat-
ing point 2. The signals of the closed loop system are shown in
Figs. 10–14. It is clear from these figures, that the proposed con-
troller outperforms and outlasts SA in damping oscillations effec-
tively. Also, compared with SA the proposed BAT based LFC has a
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smaller settling time and system response is quickly driven back to
zero. In addition, the capability and superiority of the proposed
method over SA are demonstrated.
Parameter variation

A parameter variation test is also applied to assess the effective-
ness of the proposed BAT based LFC. Fig. 15 shows the response of
frequency of first area with variation in turbine time constant. It is
clear that the system is stable with the proposed controller.
Another parameter variation test is also applied to validate the
robustness of the proposed controller. Fig. 16 shows the response
of frequency of first area with variation in T12. The designed con-
troller is capable of providing sufficient damping to the system
oscillatory modes under different operating conditions and the
robustness of the proposed controller is verified.
Performance indices and robustness

To prove the robustness of the proposed controller, some per-
formance indices: IAE, ITAE, ISE and ITSE are being used as:

IAE ¼
Z 100

0
jDACE1j þ jDACE2jð Þdt ð16Þ

ITAE ¼
Z 100

0
tðjDACE1j þ jDACE2jÞdt ð17Þ

ISE ¼
Z 100

0
ðDACE2

1 þ DACE2
2Þdt ð18Þ

ITSE ¼
Z 100

0
t � ðDACE2

1 þ DACE2
2Þdt ð19Þ
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Table 1
Controller parameters for different algorithms.

Algorithms Controller gains

BAT KPP1 ¼ 0:152; K II1 ¼ �0:164
KPP2 ¼ 0:124; K II2 ¼ �0:15

SA KPP1 ¼ 0:1991; K II1 ¼ �0:1529
KPP2 ¼ 0:0125; K II2 ¼ �0:255

Table 2
Values of performance indices.

Case Algorithm/
indices

IAE ITAE ISE ITSE

Change in second
area

BAT 0.9897 11.3487 0.0424 0.1619
SA 1.0753 15.5892 0.0436 0.1806

Change in both areas BAT 3.7922 45.2886 0.4372 2.6074
SA 7.5112 122.4424 1.0447 12.9781

Uncertainty in T12

with change in
both areas

BAT 3.8217 46.0519 0.4411 2.6533
SA 7.7716 130.0888 1.0824 13.9397
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It is noteworthy that the lower the value of these indices is, the
better the system response in terms of time domain characteristics
[59]. Controller gains and numerical results of performance robust-
ness for various operating conditions are listed in Tables 1 and 2
respectively. It can be seen that the values of these system perfor-
mance with the proposed BAT controller are smaller compared
with those of SA. This demonstrates that the overshoot and settling
time are greatly minimized by applying the proposed BAT algo-
rithm. In addition, the settling time of different signals under var-
ious operating conditions are shown in Table 3. It is clear that the



Table 3
Settling time of each variable in second for various algorithms and operating
conditions.

Area 2 demand change All areas change

BAT SA BAT SA

Df 1 27.1472 44.2425 39.8835 48.3554
Df 2 28.3680 47.9703 40.9368 49.4313
DACE1 34.7415 58.9825 59.9807 76.8690
DACE2 23.8644 24.2183 21.1053 36.6907
Du2 25.9825 36.9632 42.2083 56.7362
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settling time associate with BAT is smaller than SA. Consequently,
BAT controller provides better performance than SA. Therefore, the
proposed controller approach using BAT algorithm is more accu-
rate and faster than that in SA algorithm even for complex dynam-
ical system.
Conclusions

BAT algorithm is proposed in this paper to tune the parameters
of PI controllers for LFC problem. A two nonlinear area power sys-
tem is considered to demonstrate the proposed method. The inte-
gral of sum square error of the frequency of both areas and tie line
power are taken as the objective function to improve the system
response in terms of the settling time and overshoots. Simulation
results confirm that BAT based PI is capable to guarantee robust
stability and robust performance under various loading conditions
and system parameters changes compared with SA based PI con-
troller. Moreover, different performance indices and settling time
are obtained to verify the effectiveness of the proposed controller.
Besides its simple architecture, it has the potentiality of implemen-
tation in real time environment.
Appendix

(a) The typical values of parameters of system under study are
shown below: T1 = 0.6 s; T2 = 5 s; T3 = 32 s; TW = 1 s;
B1 = 0.383 Pu MW/Hz; B2 = 0.425 Pu MW/Hz; TP1 = 3.76 s;
TP2 = 20 s; KP1 = 20 HZ/PuMW; KP2 = 120 HZ/PuMW; Tr = 10 s;
Tg = 0.08 s; Kr = 0.5 Pu MW; R1 = 3 Hz/Pu MW; R2 = 2.4 Hz/
Pu MW.

(b) The parameters of BAT search algorithm are as follows: Max
generation = 100; Population size = 50; b ¼ c ¼ 0:9; Lmin ¼ 0;
L0 ¼ 1; Fmin ¼ 0; Fmax ¼ 100.

(c) The parameters of SA algorithm are as follows: Max genera-
tion = 100; Initial temperature = 100; the rate of tempera-
ture decline = 0.85; Temperature function = Fast.
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