
 Procedia Computer Science 31 (2014) 1044 – 1050

1877-0509 © 2014 The Authors. Published by Elsevier B.V. Open access under CC BY-NC-ND license.
Selection and peer-review under responsibility of the Organizing Committee of ITQM 2014.
doi: 10.1016/j.procs.2014.05.358

ScienceDirect
Available online at www.sciencedirect.com

2nd International Conference on Information Technology and Quantitative Management,
ITQM 2014

Clustering and Classification of Software Component for Efficient
Component Retrieval and Building Component Reuse Libraries

Chintakindi Srinivasa, Vangipuram Radhakrishnab,*,Dr.C.V.Guru Raoc
aKakatiya Institute of Technology and Science, Warangal,INDIA

bVNR Vignana Jyothi Institute of Engineering and Technology,Hyderabad,INDIA
c Professor of CSE & Principal, S.R.Engineering College ,Warangal,INDIA

Abstract

A Software Repository is a collection of library files and function codes. Programmers and Engineers design develop and
build software libraries in a continuous process. Selecting suitable function code from one among many in the repository is
quite challenging and cumbersome as we need to analyze semantic issues in function codes or components. Clustering and
Mining Software Components for efficient reuse is the current topic of interest among researchers in Software Reuse
Engineering and Information Retrieval. A relatively less research work is contributed in this field and has a good scope in
the future. In this paper, the main idea is to cluster the software components and form a subset of libraries from the
available repository. These clusters thus help in choosing the required component with high cohesion and low coupling
quickly and efficiently. We define a similarity function and use the same for the process of clustering the software
components and for estimating the cost of new project. The approach carried out is a feature vector based approach.

© 2014 The Authors. Published by Elsevier B.V.
Selection and/or peer-review under responsibility of the organizers of ITQM 2014

Keywords : component; reuse; similarity; cluster ; mining ; repository

1. Introduction

The Universality and Ubiquitous nature of the internet made the possibility to access a huge amount of
virtual unlimited information in the digital text format by the humans [17]. This gave a new definition for data
mining creating a new set of possibilities for mining text information.

* Corresponding author. Tel.: +0-000-000-0000 ; fax: +0-000-000-0000 .
E-mail address: radhakrishna_v@vnrvjiet.in

© 2014 The Authors. Published by Elsevier B.V. Open access under CC BY-NC-ND license.
Selection and peer-review under responsibility of the Organizing Committee of ITQM 2014.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2014.05.358&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

1045 Chintakindi Srinivas et al. / Procedia Computer Science 31 (2014) 1044 – 1050

Consequently the text oriented derivation of data mining called as text mining has been gaining a lot of
practical significance as the available data grows at higher rate than can be perceived or handled by the
humans. In this context, the problem of clustering is one topic that gained more practical importance from the
researchers and more specifically from the perspective of the software industry.

From software engineering perspective, the requirement for clustering comes from the need for software
component classification, software component clustering, analysing project behavior for predicting the project
cost behavior, performing software component search and for the component retrieval from software library or
software repository. Clustering is also widely used in many practical domains such as text classification,
bioinformatics, medicine, image processing to name a few.

The component clusters obtained from clustering process may be viewed as the highly cohesive groups with
low coupling which is the desired feature. Software component clustering may be defined as the process of
grouping similar set of software patterns together [1]. The input to the clustering algorithm can be a set of
software entities or software patterns or software requirement documents or any set of software components.
The result of the software component clustering process is a set of clusters having high cohesive nature w.r.t
other software clusters. The descriptions or representations of the clusters formed may be used for the decision
making for selecting a software component or software pattern of interest. The interesting feature or property of
the clustering process is that all the software components within a single cluster share common properties in
some sense and patterns in different clusters are dissimilar. From perspective of software engineering, all the
components within same cluster have high cohesion and low coupling. Clustering is not any one specific
algorithm that we can stick firm to, but it must be viewed as the general task to be solved.

Clustering algorithms may unsupervised or supervised [1]. In unsupervised clustering the partitions are
viewed as the unlabelled patterns or components. Supervised clustering algorithms label the patterns which can
be used to classify the components for decision making. Hence the partitions obtained by clustering process
may be labeled or unlabeled.

A new method called Maximum Capturing is proposed for document clustering [4].Maximum Capturing
includes two procedures: 1.Constructing document clusters and 2. Assigning cluster topics. The search
complexity can be reduced by using the algorithm [11] where ever necessary as part of component retrieval.

2. Related Works

The problem of finding frequent itemsets is first initiated from [9] which use frequent items to find
association rules in large transactional databases. In [2] clustering a given set of text documents from neighbor
set is proposed. In [3] the authors propose a method for discovering maximum length frequent item sets. In [7],
the classification of text files or documents is done by considering Gaussian membership function and d
making use of it to obtain clusters by finding word patterns. Each cluster is identified by its word pattern
calculated using fuzzy based Gaussian membership functions once clusters are formed. In this paper the idea is
to first obtain frequent item sets for each document using existing association rule mining algorithms either by
horizontal or vertical approach. Once we find frequent itemsets in each document then we form a Boolean
matrix with rows indicating documents and columns indicating unique frequent items from each document.
This is followed by the computation of a ternary feature vector for each document pair, represented as a 2D
array or 2D matrix by redefining the XNOR function as hybrid XNOR logic with slight modification in the
function introducing high impedance variable as Z. The idea of maximum capturing is taken as the base
framework for clustering [4]. The authors perform clustering using XOR similarity function [15].

1046 Chintakindi Srinivas et al. / Procedia Computer Science 31 (2014) 1044 – 1050

3. Proposed Work

3.1 Similarity Measure

To perform clustering, we define a similarity measure which may be used to find the similarity between any
pair of software components or software patterns or software documents as given in Table.A. The software
components may be software requirement specification files or software product files or program codes. The
proposed similarity measure Sim (E1, E2) is a function of any two attributes E1 and E2. We consider E1 and E2
as the attributes present in two different files F1 and F2 respectively.

Table A. Proposed Similarity Measure

E1 E2 Sim(E1,E2)

Absent Absent Neglect (say Z)

Absent Present 0

Present Absent 0

Present Present 1

The input for component clustering algorithm is a set of software components with properties predefined and

the output is a set of highly cohesive components with low coupling feature.

3.2 Algorithm for Clustering

The algorithm may be used to cluster software requirement documents or program codes and this work is an
extension of [15, 17]. If the dimensionality is very high, then to reduce the dimension of the documents we may
eliminate stop words and stemming words by forming a list of stop words separately and storing in a file. When
clustering English documents we may use porter stemmer algorithm. In case, if the dimensionality of software
documents is too large to handle, then to further reduce the dimension we may apply Singular value
decomposition as given in step1 of the algorithm.

Algorithm. Algorithm for Component Clustering.

Input: Document set, frequent items.

Output: set of clusters.

Begin of Algorithm

Step1:

 For each document D do

 Begin

 Step1.1 Remove stop words and stemming words from each document.

 Step1.2 Find unique words in each document and count of the same.

 Step1.3 Find reduced dimension set by applying Singular Valued Decomposition to all the files.

 End for

Step 2: Form a word set W consisting of each word in reduced item set of each document of step1.

Step 3: Form Dependency Boolean Matrix with each row and column corresponding to each Document and each

 word respectively

 For each document in document set do

1047 Chintakindi Srinivas et al. / Procedia Computer Science 31 (2014) 1044 – 1050

 Begin

 For each word in word set do

 Begin

 If (word wk in Word set W is in document Di)

 Begin

 Set D[Di, wk] = 1

 Else

 Set D[Di, wk] = 0

 End if

End for

 End for

Step 4: Find the Feature vector similarity matrix by evaluating similarity value for each component pair applying

 similarity measure defined in table 1 to obtain the matrix with feature vectors for each component or document pair.

Step 5: Replace the corresponding cells of matrix by count of number of zeroes in tri state feature vector.

Step 6: At each step, find the cell with maximum value and document pairs containing this value in the matrix.

 Group such document pairs to form clusters. Also if document pair (X,Y) is in one cluster and document pair

 (Y, Z) is in another cluster, form a new cluster containing (X, Y, Z) as its elements.

Step 7: Repeat Step6 until no components or documents exist or we reach the stage of first minimum value leaving zero entry.

Step 8: Output the set of clusters obtained.

Step 9: Label the clusters by considering candidate entries.

End of algorithm

4. Case Study- Clustering Software Projects to Estimate Project Cost

Consider the sample parameters for the software project based on the programming language used, platform,
software type, existing plan, and development model [16]. If we need to cluster or classify the set of projects
based on these parameters then we can use the proposed algorithm to achieve the task.

Let the parameters contain the domain as

Programming Language = {C: 1, C++:2, JAVA: 3, COBOL: 4, C##:5}

Platform= {Personal Computer: 1, Mobile: 2, Mainframe: 3}

S/W TYPE = {Application: 1, Embed: 2}

PLAN = {Yes: 1, No: 0}

Development Model = {Waterfall: 1, Iterative: 2, Agile: 3, Spiral: 4, Prototype: 5}

We form the matrix with rows indicating the projects and columns indicating the factors considered for
the project evaluation using direct approach.

1048 Chintakindi Srinivas et al. / Procedia Computer Science 31 (2014) 1044 – 1050

Table 1. Matrix showing the combination of Project VS Parameters.

PL Platform S/W type Plan Modern
Practice

Dev.
Model

Priority Risks Release type

Project 1 C PC application no yes waterfall low less 1.0
Project 2 C++ PC application yes yes iterative low Less 1.0
Project 3 Java Mobile embedded no yes agile high mediu

m
1.0

Project 4 C Mobile embedded no yes Spiral low less 1.0
Project 5 C Mobile embedded no yes Prototype low less 1.0
Project 6 Cobol mainframe application yes no Iterative medium mediu

m
2.0

Project 7 Java Mobile embedded no yes Spiral low less 2.0
Project 8 C# Mobile embedded no yes agile low less 2.0

Table 2. Matrix obtained after index generation.

Project
Vs
Attribute

PL Platform S/W
type

Plan Modern
Practice

Dev.Mode Priority Risks Release
type

Project 1 1 1 1 2 1 1 1 1 1.0
Project 2 2 1 1 1 1 2 1 1 1.0
Project 3 3 2 2 2 1 3 2 2 1.0
Project 4 1 2 2 2 1 4 1 1 1.0
Project 5 1 2 2 2 1 5 1 1 1.0
Project 6 4 3 1 1 2 2 3 2 2.0
Project 7 3 2 2 2 1 4 1 1 2.0
Project 8 5 2 2 2 1 3 1 1 2.0
Project 9 3 2 2 2 1 4 1 1 1.0

Table 3. Similarity Matrix obtained from Table.2.

Stage 1: Choose the cell with maximum value from Table.3. Here (P4,P5), (P4, P9), (P7, P9) have value as 8.

Group these cells to form an initial cluster containing projects (P4, P5, P7, P9).

We thus have CLUSTER-1: {P4, P5, P7, P9}.

Stage 2: Choose the cell with next maximum value from Table.4. Here (P1, P2) are having value 6. Group

 P1 P2 P3 P4 P5 P6 P7 P8 P9
P1 X 6 2 6 6 1 4 4 5
P2 X X 2 4 4 4 3 3 4
P3 X X X 5 5 1 5 3 4
P4 X X X X 8 0 7 6 8
P5 X X X X X 0 6 6 7
P6 X X X X X X 1 1 1
P7 X X X X X X X 7 8
P8 X X X X X X X X 6
P9 X X X X X X X X X

1049 Chintakindi Srinivas et al. / Procedia Computer Science 31 (2014) 1044 – 1050

these cells to form a cluster containing projects (P1, P2).

Table 4. Reduced Similarity Matrix obtained from Stage 1.

We thus have CLUSTER-2: {P1, P2}

Stage 3: Choose the cell with next maximum value from Table.5. Here (P3, P8) are having value 3.
 Group these cells to form a cluster containing projects (P3, P8).

Table 5. Reduced Similarity Matrix obtained from Stage 2.

So the cluster formed is CLUSTER-3: {P3, P8}

Stage 4 : The final cluster formed is CLUSTER-4: {P6}

Table 6. Reduced Similarity Matrix obtained from Stage 3.

If we have a new project with parameters specified, we can test to which cluster the new project is similar

and then can estimate the nature of the project to perform cost estimation.

So the clusters formed are

CLUSTER-1: {P4, P5, P7, P9}.

CLUSTER-2: {P1, P2}

CLUSTER-3: {P3,P8}

CLUSTER-4 : {P6}

 P1 P2 P3 P6 P8
P1 X 6 2 1 4
P2 X X 2 4 3
P3 X X X 1 3
P6 X X X X 1
P8 X X X X X

 P3 P6 P8
P3 X 1 3
P6 X X 1
P8 X X X

 P6
P6 X

1050 Chintakindi Srinivas et al. / Procedia Computer Science 31 (2014) 1044 – 1050

5. Conclusion

In this paper, we define a new similarity function to compute the similarity between any two software
components or software requirement documents. An algorithm to cluster a set of software components is
outlined which uses the proposed similarity function to find the similarity among any two software entities. The
input to algorithm is a similarity matrix and the output is the set of cohesive clusters. The algorithm is applied
to set of projects with predefined parameters and clustering process is carried out from which we can estimate
the cost of the project from the properties of previously carried out projects. In future, the approach can be
extended to classify the components using classifiers by applying fuzzy logic. The search complexity can be
reduced by using the algorithm [11] where ever necessary as part of component retrieval.

References

1. V.Susheela Devi, M. Narasimha Murthy. Text Book on Pattern Recognition. An Introduction. University Press.
2. Congnan Luo, Yanjun Li, M. Chung. Text document clustering based on neighbours, Data & Knowledge Engineering, 2009; 68:1271–

1288.
3. Tianming Hu, Sam Yuan Sung, Hui Xiong, Qian Fu. Discovery of maximum length frequent itemsets, Information Sciences, 2008; 178:

69–87.
4 Wen Zhanga,, Taketoshi Yoshida, Xijin Tang, Qing Wang. Text clustering using frequent itemsets, Knowledge-Based Systems, 2010;

23: 379–388
5. Wen Zhanga, Taketoshi Yoshida, Xijin Tang. A comparative study of TF*IDF, LSI and multi-words for text classification. Expert

Systems with Applications, 2011; 38: 2758–2765.
6. Vincent Labatut and Hocine Cherifi. Accuracy Measures for the Comparison of Classifiers, ICIT 2011 The 5th International Conference

on Information Technology.
7. Jung-Yi Jiang et.al A Fuzzy Self-Constructing Feature Clustering Algorithm for Text Classification. IEEE Transactions on Knowledge

and Data Engineering, 2011; 23(3).
8. Melita Hajdinjak, Andrej Bauer. Similarity Measures for Relational Databases, Informatica, 2009; 33:143–149.
9. R.Agrawal, T. Imielinski, A. Swami. Mining association rules between sets of items in very large databases, Proceedings of the ACM

SIGMOD Conference on Management of data, 1993: 207–216.
10. F. Beil, M. Ester, X.W. Xu, Frequent term-based text clustering, in: Proceedings of the 8th ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining, 2002: 436–442.
11. Radhakrishna.V, C.Srinivas, C.V.GuruRao. High Performance Pattern Search algorithm using three sliding windows, International
 Journal of Computer Engineering and Technology, 2012; 3: 543-552.
12. V.Susheela Devi, M. Narasimha Murthy. Text Book on Pattern Recognition. An Introduction. University Press.
13. Salim kebir, Abdelhak-djamel seriai, Sylvain Chardigny. Comparing and Combining Genetic and Cluster Algorithms for Software

Component Identification, in the Proceedings of the ACM Fifth International Conference on Computer Science and Software
Engineering, 2012: 1-8.

14. Ronaldo.C.Veras, Silvio R.L.Meira, Adriano L.I. Oliveira, Bruno J.M.Melo. Comparitive study of clustering techniques for the
organisation of software repositories, in the proceedings of 19th IEEE International Conference on Tools with Artificial Intelligence.

15. Vangipuram Radhakrishna, C.Srinivas, C.V.GuruRao. Document Clustering Using Hybrid XOR Similarity Function for Efficient
Software Component Reuse. Procedia Computer Science, 2013; (17): 121-128.

16. Divya Kashyap, A. K. Misra. Software development cost estimation using similarity difference between software attributes. ISDOC
'13: Proceedings of the 2013 International Conference on Information Systems and Design of Communication.

17. Chintakindi Srinivas, Vangipuram Radhakrishna, C.V. Guru Rao. Clustering Software Components for Program Restructuring and
Component Reuse Using Hybrid XNOR Similarity Function. Procedia Technology, 2014 ; (12): 246-54.

