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Abstract

A seismic damage identification method intended for buildings with steel moment-frame structure is presented in this paper. The
method has a statistical approach and is based on artificial neural networks and modal variables. It consists of two main stages. The
initial one is devoted to the calibration of the undamaged structure and the final one to the identification of the damaged structure after
an earthquake. The inputs of the nets are the first flexural modes (frequencies and mode shapes) at each principal direction of the struc-
ture and the outputs are the spatial variables (mass and stiffness). A damage index at each storey is determined by comparing the initial
and final stiffness. A simplified finite element model was used to generate the data needed to train the nets. This model is consistent with
available modal data and damage definition. The method was simulated on a 5-storey office building under conditions as close as possible
to reality. The robustness of the method was verified with simulated data. Latter on, a sensitivity analysis of the mass variability was also
carried out. Finally, the influence of modal error in the accuracy of damage predictions was statistically studied. Results are successful as
concern as the robustness of the method. However, it is found that this approach is quite sensitive to modal errors.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Recent large earthquakes have shown that the structures
in general are not completely protected against these
events. When damage is not evident, it is useful to have
information about the state of the structure, which is cru-
cial in the case of important and public buildings as hospi-
tals, communication centres, etc. If a severe damage is
found, an immediate evacuation of people is pertinent, so
as to prevent risks derived of aftershocks or posterior
earthquakes. If low damage is predicted, the building can
be returned to use reducing the economic effect of the
earthquake.

Seismic design codes have significantly improved during
last century [1]. The fundamental principle of modern
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codes is that the structures should remain elastic under
small to medium earthquakes. In the case of large earth-
quakes, a controlled damage is permitted without collapse.
This behaviour is achieved by means of plastic hinges,
which are usually located in the beams.

Welded Steel Moment Frame (WSMF) buildings are
very common in seismic areas due to its easy-to-build char-
acteristics and ductile response. However, the post-seismic
inspections carried out after the Northridge and Hyogo-
ken-Nambu earthquakes revealed brittle fractures in some
joints [2], which caused important reductions to the
stiffness and ductility of the structures. This leads to a
new design of the joints called ‘‘performance-based design’’,
which guarantees a good ductile performance of the joint.
Even so, a lot of structures with old joints are likely to
experience brittle fracture during a strong earthquake.
On the other hand, formation of hinges implies a reduction
of stiffness, which can weaken the structure and becoming
vulnerable to aftershocks or new earthquakes. Thus,
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the development of post-seismic methods for damage
identification is justified in order to control the global state
of the structure.

The aforementioned assessment of a structure can be
carried out by local methods, as visual inspection, acoustic
emission, radiography, etc. [3]. However, these methods are
generally slow, expensive and their application requires the
covering materials to be removed at the zones inspected.
Global methods as vibration-based methods are non-
destructive and give a global damage assessment of a struc-
ture using its dynamic response. A further local inspection
focused only in the zones where the damage is predicted
can be done using local methods. The advances in sensors
and computing have motivated an extensive research in
vibration-based methods. In the literature review presented
by Doebling et al. [4] is concluded that robust methodolo-
gies focused on specific applications are needed.

A method based on neural networks (NNs) is proposed
in this paper. The objectives of the method are to detect
and quantify the global damage at each storey of a WSMF
building using its low natural frequencies and mode shapes.
The method is an attempt of generalisation of previous
authors’ works [5–7] and constitutes an extension of an ear-
lier method that is only based on natural frequencies [8].
Neural networks have particular characteristics that make
them appropriate for this case. They can give the diagnostic
of a structure almost instantaneously and their generalisa-
tion capability can be known beforehand during the train-
ing and testing processes. The aim of this work is to analyse
the robustness of the proposed method under conditions as
close as possible to those of the actual structures.

2. Damage identification method

2.1. General approach

The method proposed here is intended for buildings
designed under modern codes with the following
conditions:

• Steel moment-frame structure with regular geometry
both in plan and elevation.

• Under seismic action, floors move as a rigid body within
their plane.

• Lateral loads are absorbed by beam to column joints.
• Lateral displacements due to axial column deformation

are negligible when comparing with those due to lateral
deformation.

The dynamic features selected for the identification
where the natural frequencies and the mode shapes corre-
sponding to the flexural vibration modes of the building
in each transversal principal direction. In practice only a
reduced number of low natural frequencies and mode
shapes can be precisely identified with the common avail-
able techniques of modal testing and identification in build-
ings [9]. Taking into account this limitation, it is assumed
that only the first three natural frequencies and mode
shapes are known in each principal direction.

As the dynamic information is limited and both mass
and stiffness affects the dynamic response of the structure,
the identification process is carried out in each principal
direction in two main stages. The first one corresponds to
the initial state of the building. In this stage both the stiff-
ness K0 and the mass M0 of the undamaged building is cal-
ibrated. The second one corresponds to a possible damage
state of the building after a significant earthquake. The
stiffness Kf and the mass Mf are recalculated. The presence
and extension of the damage is finally estimated by com-
paring the initial and final values of stiffness.

At each stage, a NN is used to obtain the corresponding
unknown spatial variables from the experimental modal
properties of the building. Both nets are referred to as ini-
tial neural network (INN) and final neural network (FNN),
respectively, in the remainder of the paper. Considering
that abrupt changes of stiffness may occur in this case,
inverse methods are not appropriate because they are rela-
tively slow, and the convergence to the solution is not
always guaranteed. NNs, however, can supply the spatial
variables of the structure from the modal data in a short
period of time. On the other hand, their convergence is
guaranteed, as often as the modal data are within the train-
ing domain. The characteristics of these NNs are explained
in the next section.

2.2. Neural networks

NNs are computational models inspired in the architec-
ture and operation of the human brain. They are an assem-
bling of connected processing units called neurons. The
strength of the connection is represented by the ‘‘weights’’
or parameters, which are determined in the training
process.

Radial basis function and multi-layer perceptron (MLP)
are the typical configurations used for damage detection. In
this work, a two-layer feed-forward MLP was used.

The inputs (xi) of the MLP were the natural frequencies
and the mode shapes, while the spatial variables consti-
tuted the output of the net (yi). Output variables are
obtained from the input in a concatenated way, through
linear combinations of previous layer values and weights
(w) transformed by activation functions. A tangent hyper-
bolic activation function was used for the hidden layer (g)
and a linear one for the output layer g (Fig. 1).

yk ¼ ~g
Xr

j¼0

wð2Þkj � g
Xd

i¼0

wð1Þji � xi

 !" #
ð1Þ

This constitutes a black-box model based on mother
basis functions of a single variable, which can approximate
any continuous non-linear multivariate function within a
given finite domain just by adjusting its weights. The accu-
racy of the approximation increases with the number of
hidden units [10].



Fig. 1. Configuration of the multi-layer perceptron.

Fig. 2. Analytical models. Left: complete. Right: simplified.
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In the literature, the process of fitting a MLP to a given
function is known as learning or training. The learning is
based on a set of patterns of mapped input and output vec-
tors, which is called learning data, and is obtained either
analytically or experimentally. The process consists on
minimising a quadratic error function, which represents
the discrepancies between the predictions of the MLP cor-
responding of the input data and the target ones, with
respect to the MLP weights. The optimisation process is
divided in two steps. Firstly, the derivatives of the error
function respect to the parameters of the net are computed.
Error Back Propagation algorithm with batch strategy was
used for this step. In the second step the optimisation of the
parameters was done using Scaled Conjugate Gradients
(SCG). SCG is an efficient algorithm of optimisation that
takes the minimum number of cycles to minimise the error
function. It belongs to the ‘‘line search’’ family where the
minimum is obtained in a determined direction and the
next search direction is the conjugated of the previous
one. The method guaranties that the minimum is reached
after W cycles for a quadratic error function, W being
the number of weights. As the error function is not usually
quadratic, SCG tends to degenerate during the running of
the algorithm. Therefore, it should be restarted if conver-
gence is not reached after several cycles. The learning was
managed so as to restart the SCG by resetting the search
vector to the negative gradient directions when the number
of cycles equals the number of adaptive weights (W) of the
MLP.

After training, the capacity of generalisation of the MLP
is tested through a data set, which is similar to that used for
training but containing different patterns. The testing is
developed by comparing the predictions of the trained
MLP from the input data with the output ones. This is
especially important when the data contain noise. If the
MLP has too many hidden units, it reproduces not only
the information underlying in the data, but also the noise.
This undesirable result is called over-fitting. More details
about MLPs can be found in Bishop [11].

The Netlab package was used to compute the MLP.
This is a library freely offered by its authors from the Aston
University [12]. Netlab is implemented as a set of functions
written in the Matlab language using only core functions.
2.3. Analytical model

2.3.1. Description

A Finite Element (FE) model is used to generate the
data for training and testing the NNs. As the information
contained in the features is limited, the definition of both
the damage and the FE model should be consistent with
it. Thus, the damage should be defined by a number of
independent parameters less than or equal to the number
of available modal parameters. Otherwise, the NNs would
be unable to generalise. This is because different states of
damage lead to very close sets of modal parameters [13].

For this type of structures, the damage scenario is
defined on the basis of their past performance in earth-
quakes and the previsions of modern codes. Thus, the
selected potential damage zones are the beams and col-
umn–foundation connections. These conditions are accom-
plished with a simplified semi-frame model containing a
number of spatial variables equal to the number of avail-
able modal data (Fig. 2).

In this model, the Degrees of Freedom (DoFs) represent
the horizontal translations of each storey of the original
structure. As the modal information corresponds only to
the translations, the rotational DoFs were dynamically
condensed. For each storey, kc, kb, m are representative
of the overall column stiffness, beam stiffness and mass of
the corresponding storey. The global mass and stiffness
matrices of the simplified model can be assembled from
the individual masses and stiffnesses. kfj represents the col-

umn–foundation joint stiffness. A completely rigid connec-
tion corresponds to kfj =1, while a perfect hinge
corresponds to kfj = 0. This variable also includes the foun-
dation flexibility itself and, to some extend, the soil–struc-
ture interaction. In order to avoid large values of kfj, a new
variable c was defined.

c ¼ kfj

kfj þ kc1

ð2Þ



Fig. 4. Left: 1-bay frame. Right: equivalent semi-frame.

M.P. González, J.L. Zapico / Computers and Structures 86 (2008) 416–426 419
where kc1
is the stiffness of the pier of the first floor in the

simplified model. This variable is referred to as foundation

joint fixity factor and takes values in the [0–1] interval,
c = 1 for a rigid joint and c = 0 for a pinned one.

The damage to the structure is considered to be localized
in beams and column–foundation joints, the column stiff-
ness being considered constant during the life of the
structure.

2.3.2. Starting values

In order to obtain an approximate starting value of the
spatial variables of the simplified model, each storey is
splitted in a series of identical 1-bay frames (see Fig. 3).
Thus, all of them have the same modal properties. Hence,
the 1-bay frame represents dynamically the complete
storey.

Another advantage is that they have anti-symmetric
mode shapes. This allows the 1-bay frame to be reduced
to an equivalent semi-frame having half beam length (see
Fig. 4).

Finally, the physical properties of the equivalent semi-
frame are approximate in each storey by equating the
sum of all the values of each original variable (see
Fig. 3a) to those of the 1-bay frame series (see Fig. 3b).
This yields the following values of the variables of the
equivalent semi-frame (Fig. 4):

kceq ¼ kc ¼
P

ik
i
c

ð2N c � 2Þ �M c

; kbeq ¼ kb ¼
P

ik
i
b

ðN c � 1Þ �M c

;

Lbeq ¼
Lb

2
¼

P
iL

i
b

2ðN c � 1Þ �M c

; meq ¼ m ¼
P

im
i

ð2N c � 2Þ �M c

ð3Þ

where Nc and Mc are the number of columns parallel and
perpendicular to the considered direction, respectively.
This procedure allows the starting values of the variables
of the simplified model to be expeditiously calculated from
those of the complete one.
Fig. 3. (a) Original storey. (b) 1-bay frame series.
2.3.3. Damage definition

When damage is present in a structure and there is not
external evidence, which are the conditions the actual
method is intended for, it is generally due to brittle frac-
tures. Other damage mechanisms, such as low-cycle fatigue
and local buckling, might also contribute to the structure
deterioration. The damage is usually located at the connec-
tions of the beams to other elements and splices, and it is
randomly distributed through the structure. As a conse-
quence of the damage there is a reduction in the flexural
stiffness of the beams, which affects the lateral stiffness of
the structure.

In order to be consistent with the practical available
modal data, the damage is defined globally through the
simplified FE model. Thus, in each storey, the damage is
formulated as the variation of the bending stiffness relative
to the undamaged one,

dbi ¼
kbii � kbfi

kbii

ð4Þ

where kbii and kbf i are the bending stiffness in the plane to
be analysed of the beam corresponding to the storey i in
the simplified FE model, for the undamaged and damaged
states, respectively. This constitutes a bounded global dam-
age index for each storey, in which a value 0 represents an
undamaged storey, and a value 1 represents a complete
damaged storey.

In the same way, the column–foundation joint damage
severity a is defined as,

a ¼ ci � cf

ci
ð5Þ

where ci and cf are the foundation joint fixity factor in the
simplified FE model corresponding to the undamaged and
damaged state, respectively.

This simplified model was coded in Matlab [14], and the
related natural frequencies and mode shapes were com-
puted through fe_eig function of the Structural Dynamic
Toolbox [15].

2.4. Modelling of spatial variables

The spatial properties (mass and stiffness) are considered
as random functions of both time and position in order to
obtain a representation as close as possible to reality.
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2.4.1. Stiffness

A different modelling is adopted in each stage of the
structure. Three different stiffnesses are considered in the
modelling: column, beam and foundation joint fixity
factor.

• Column stiffness. It is assumed to remain constant dur-
ing the life of the structure. Thus, the value obtained
in the initial stage is used for the final one. The varia-
tions of stiffness of each structural element respect to
its nominal value are assumed to be normally
distributed.

• Beam stiffness. It is assumed to be constant in the period
of life previous to a significant earthquake and normally
distributed. In the final stage, a random and indepen-
dent reduction of stiffness is assumed in the different sto-
reys of the structure.

• Foundation joint fixity factor. This variable can take val-
ues in [0–1] interval in the initial stage. In this study, a
nominally fixed joint, which can have values of c within
the [0.891–1] interval according to the Eurocode [16], is
considered. A Beta distribution, which accomplish for
the aforementioned conditions, was adopted for this
variable (Fig. 5). In the final stage, a uniform random
reduction was selected for c.
2.4.2. Mass modelling

A hierarchical model has been used for modelling the
mass. The mass variability has been modelled dividing
the total mass in two specific and independent different
parts: the dead mass and the live mass.

The dead mass includes the mass of the structure and the
mass of permanent non-structural elements and installa-
tions. This term does not vary significantly through the life
of the structure. The discrepancies of the actual values
respect to the nominal ones are usually considered to be
normally distributed with some additive constant discrep-
ancy [17].

In general, the live mass includes the furniture, equip-
ment, stored objects and people. In this case, however, it
is assumed that the building is not occupied during the
experimental modal testing. Consequently, the part of the
Fig. 5. Beta distribution for c factor.
mass corresponding to people is not taken into account.
Live mass varies at random in time and space. The spatial
variations are assumed to be homogeneous, and the varia-
tion in time is divided in the sustained and intermittent com-
ponents. The sustained mass includes the time average of
the actual fluctuating mass and the uncertainties due to
the short-term fluctuations around the average. The inter-
mittent masses have small relative duration, and they are
due to sources like gathering of people or furniture staking
during remodelling. The latter component was not consid-
ered in this work.

The sustained mass corresponding to a floor was com-
puted through an equivalent uniform distributed mass q

with the following statistical properties.

E½q� ¼ m

Var½q� ¼ r2
V þ r2

U

A0

A
j

ð6Þ

where m is the overall mean mass per unit of area. The var-
iable V represents the variability of the sustained mass be-
tween different floors and it is considered zero mean and
normally distributed. The variable Uðx; yÞ describes the
mass variability into the same floor and it is a zero mean
random field with a characteristic skew to the right. The
variables U and V are assumed to be stochastically inde-
pendents. A denotes the area of a floor and A0 is the refer-
ence area. Finally, the parameter j depends on the shape of
the influence surface. In this case, it takes the value 1, be-
cause the influence surface is constant as all the elemental
masses have the same contribution to the total mass in each
floor.

The values of de parameters depend on the use of the
building, and a Gamma distribution is found to fit ade-
quately the actual observations. More details of the model-
ling can be found in Probabilistic Model Code [18].
3. Simulation on a 5-storey building

3.1. Description of the building

The reference structure used for the simulation is
intended to be representative of a typical office building.
It was a 5-storey building with regular distribution both
in plant and elevation. The dimensions of the building were
16 m width and 18 m length rectangular plant, the height
being 4 m for the first storey and 3 m for the rest. The
structure is designed with a moment-resistant orthogonal
steel frame 4-bay by 3-bay, the columns being HEB-450
sections and the beams, IPE-450 sections. It had concrete
floors and glass façade.

The nominal dead mass of the building was 480 kg/m2

for the fifth storey and 380 for the remainders. A Gamma
distribution was adopted for the live mass, the parameters
of the model in Eq. (6) being [18] m ¼ 37:5 kg/m2,
rV ¼ 15 kg/m2, rU ¼ 30 kg/m2 and A0 ¼ 20 m2.
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3.2. Application of the method

The method was simulated considering the major princi-
pal direction of the building z (see Fig. 6). The inputs to the
nets were the first modes of the structure. Namely, three
natural frequencies and mode shapes for the INN, and
three natural frequencies and two mode shapes for the
FNN. The outputs were masses, beam stiffnesses, column
stiffnesses of each storey and column–foundation joint fix-
ity factor for the INN, and masses, beam stiffnesses of each
storey and column–foundation joint fixity factor for the
FNN.

If all the physical variables were considered in the initial
stage, they could not be determined from the modal data,
because proportional values of the variables yield the same
modal properties. In order to break this indeterminacy, the
stiffness of the first floor pier in the simplified model was
fixed in the initial stage. Its value was set equal to that
obtained by Eq. (3).

The number of input variables was selected to be at least
the same as output variables, in order to have enough
information to train the networks. The number of interme-
diate units was selected by trial and error adopting a trade-
off between training time and precision of the testing
results. Eventually, a n:4n:n architecture was used for all
the NNs. The configuration of both neural networks is
shown in Fig. 7.

After selecting the architecture of the nets, the database
for training and testing was generated. At each stage, the
process of building the database started with the generation
of the random output values. For this end, the Latin
Hypercube (LH) method was used. LH method is an effi-
cient algorithm that provides a uniform multivariate sam-
pling and guaranties a good representation of the entire
probability interval. In this process, each component was
considered as an independent random variable with a given
probability density function (pdf) in each stage (see Table
1). The pdfs of the variables should be selected as close
as possible to reality so as to reduce the training process
and improve the predictions of the nets. The database
was then completed with the corresponding modal data,
which was computed by the simplified model on the basis
Fig. 6. Scheme of the building.
of the selected variables. Finally, the NNs were trained
and tested.

In the initial stage, a Gaussian distribution was adopted
for both the column stiffness and the beam stiffness, with
coefficients of variation 5% and 11.5%, respectively. This
distribution is intended to cover both the modelling errors
and the deviations of each variable with respect to its nom-
inal value. A Beta distribution was adopted for the variable
c. The parameters of this distribution were tuned to achieve
a 95% probability in the [0.891–1] interval of the variable,
which is representative of a nominally fixed joint (see
Fig. 5). Only constants masses are considered in this stage.
They are assumed to have Gaussian distribution with 7.5%
coefficient of variation. A database containing 3000 data
sets was generated with the aforementioned procedure.
2000 sets were used for training the INN, and the remain-
ing 1000 sets for testing. The training lasted 300 h. The
results of testing are shown in Table 2. The correlation
coefficients between the target values and the INN predic-
tions are good, with values greater than 0.82 for all the
variables.

In practice, the INN would be used to calibrate the ini-
tial variables from the starting ones just by feeding the INN
with the experimental modal data. As experimental data is
not available in this study, they were replaced with analyt-
ical ones corresponding to the mean values of the variables.
The calibrated values of the column stiffnesses obtained in
this stage are used in the next one.

In the final stage, a uniform distribution was adopted
for the final beam stiffness and column–foundation stiff-
ness. A variation relative to the initial values within the
[�30%, +10%] interval was assumed for these variables.
Even though a negative variation of stiffness is expected
in practice, the predictions of the FNN could be positive
variations in some cases due to the interpolation errors of
the FNN and the errors of the input data. That is why a
positive bound of the interval was adopted. It tries to avoid
practical extrapolation errors in the FNN. The masses
include the dead ones previously calibrated plus the live
ones. These are assumed to have a Gamma distribution
with the parameters given by Eq. (6). The database had
1500 data sets in this case. 1000 sets were used for training
Left: plan. Right: elevation.



Fig. 7. Neural networks of both the initial stage and the final stage.

Table 1
Type of pdf of the variables

Variable Stage

Initial Final

kc Gaussian –
kb Gaussian Uniform
m Gaussian Gamma
c Beta Uniform

Table 2
Correlation coefficient for every variable and storey for the INN and FNN
testing

Storey

1 2 3 4 5

INN

mi 0.9456 0.9437 0.9424 0.9439 0.9435
kci 0.8551 0.8858 0.8895 0.7949
kbi 0.9789 0.9723 0.9721 0.9689 0.9520
ci 0.8244

FNN

mf 0.9997 0.9996 0.9998 0.9993 0.9995
kbf 0.9998 0.9999 0.9998 0.9999 0.9999
cf 0.9999

Fig. 8. Neural networks with constant mass.
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the FNN, and the remaining 500 sets for testing. The train-
ing lasted 11 h. The results of testing are also shown in
Table 2. The correlation coefficients between the target
values and the FNN predictions are even better than the
previous ones, with values greater than 0.9993 for all the
variables. Consequently, the NNs are capable of giving
accurate predictions from unseen data.

3.3. Mass sensitivity analysis

The influence of the mass variability in the accuracy of
the damage predictions is studied in this subsection. For
this purpose, an additional NN was developed for the final
stage. It is referred to as Constant Mass Neural Network
(CMNN) in the following. The inputs to this NN were
the first two natural frequencies and the first mode shape,
while the outputs were the beam stiffnesses of each storey
and the column–foundation joint fixity factor. A 6:24:6
architecture was adopted for this NN (see Fig. 8).

A database similar to that used for the FNN and con-
taining 750 data sets was generated through the LH
method and the calibrated simplified model. The same
value of the mass of each storey was considered in all the
sets. They were computed on the basis of the mean values
of the mass variables. 500 data sets were used to training,
and the rest for testing the CMNN.

Once trained the CMNN, another database with 1000
data sets was generated in order to compare the accuracy
of the damage predictions of both the FNN and the
CMNN. This was intended to be representative of actual
data. Hence, it was generated by taking random values of
the live mass combined with independent random values
of the damage. The variables were also selected through
the LH method by using the adopted Gamma pdf for the
mass and the uniform one for the damage. Then, the corre-
sponding modal properties of the structure were computed
by the calibrated simplified FE model. Finally, this data-
base was used to feed both the CMNN and the FNN,
and the accuracy of their predictions was studied.

Fig. 9 shows the results of both the CMNN and the
FNN compared with the target values. The discrepancies
in the results of the FNN are only due to its accuracy,
and those of the CMNN include the effects of the mass var-
iability, too. It is visually evident a high scatter in the
results of the CMNN, while those of the FNN are within
a narrow band around the exact solution.

These results are numerically shown in Table 3. The
correlation coefficients between the target values and the
predictions for both nets are included. The values for



Fig. 9. Correlation between target and predicted damage. Left: CMNN. Right: FNN.

Table 3
Correlation coefficient for mass sensitivity

Storey

1 2 3 4 5

CMNN

db 0.2434 0.5058 0.4706 0.6814 0.4527
a 0.3035

FNN

db 0.9977 0.9988 0.9981 0.9993 0.9990
a 0.9994
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the CMNN are very poor, while those of the FNN are
excellent.
Fig. 10. Statistical neural network.
3.4. Influence of modal data errors

In previous subsections, the natural frequencies and
mode shapes have been considered as deterministic values.
However, in practice, modal data includes uncertainties
due to measurement and identification errors that affect
the precision of the damage predictions. The transmission
of these uncertainties and their influence in the damage pre-
dictions are statistically studied in this subsection. Even
though both the INN and the FNN contribute to the dam-
age prediction errors, only the effect of the FNN was con-
sidered herein. This is because in the final stage a quick
response is necessary, while in the initial one there is gener-
ally enough time to reach an accurate calibration of the
structure.

In order to distinguish the influence of every type of
modal variable in the final damage error, two separate
analyses were carried out. The first one considering only
the frequency error and the second one considering only
the mode shapes error.

The process consisted on the comparison of the refer-
ence damage values with those obtained through the
FNN. For this end, a database containing 10,000 values
was generated. This data base is similar to that used for
training the FNN, but with a [�20%, 0%] interval for the
variation of the stiffnesses. This was completed by comput-
ing the damage indexes using Eqs. (4) and (5), which con-
stitutes the reference database.

In order to obtain the modal data close to that obtained
in practice, the reference natural frequencies and mode
shapes were contaminated. For this purpose, Gaussian
noise with a given coefficient of variation d was indepen-
dently added to every modal variable.

These contaminated modal variables were used to feed
the FNN providing 10,000 values of damage index. The
difference between each damage index and the correspond-
ing one in the reference is referred to as the Damage Predic-
tion Error (DPE). This process was repeated for different
values of d, namely, from 0% to 0.5% with an increment
of 0.1% for the natural frequencies and from 0% to 0.1%
with an increment of 0.02% for the mode shapes.

Even though the input error is normally distributed, the
output errors are not Gaussian due to the non-linearity of
the process. Moreover, the FNN interpolation errors are
added to the output. Under these conditions, it is very dif-
ficult to fit all the results to a given probability distribution.
Eventually, it was decided to interpolate the obtained
cumulative probability functions (cpf) of the damage error
by means of a new neural network, which will be referred
as statistical neural network (SNN). The advantage of this
approach is that the cpf is not defined a priori, but it is
implicit in the net. A 2:2:1 architecture was eventually
adopted for this net. The inputs are the cpf of the damage
error and the coefficient of variation of the modal error d,
and the output is the corresponding DPE for each variable
(Fig. 10).

From the data obtained in the numerical simulation, a
discrete cumulative frequency function containing 150 val-
ues was obtained for each value of d. These data were used
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to train the SNN for each stiffness variable. Once trained,
the SNN can supply the equiprobability curves of the
DPE as a function of d. These results are plotted in Figs.
11 and 12.

As it can be seen, all the cases show the same trend.
There is an initial error for d = 0 due to the approximation
of the FNN. Then, the absolute value of DPE increases
exponentially as a function of d. Additionally, mode shapes
have more influence in the value of the output error than
natural frequencies. Setting d = 0.1, for example, the
DPE corresponding to the mode shapes is around six times
greater than that of the natural frequencies.

These curves can be used to obtain the maximum allow-
able level of d for a given maximum absolute value of the
output error with a given confidence (Fig. 13). For exam-
Fig. 11. Equiprobability curves as a function of the coefficien
ple, it is found that d should be less than 0.1% in natural
frequencies to obtain absolute values of the damage predic-
tion errors up to 0.05 with a 95% confidence (values
between 2.5% and 97.5%). In the case of mode shapes, d
should be less than 0.02%, for the same conditions.

3.5. Conclusions

In this paper, a method for seismic damage identifica-
tion using modal parameters and neural networks has been
developed. The method is intended for buildings with steel
moment-frame structure. The process includes two succes-
sive stages, starting with a calibration of the initial stiffness
and mass of the structure. The second stage deals with the
identification of the final stiffness and mass after a severe
t of variation of the input error for natural frequencies.



Fig. 12. Equiprobability curves as a function of the coefficient of variation of the input error for mode shapes.

Fig. 13. Maximum allowable modal error for a given absolute damage
error.
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earthquake. In each stage, a MLP was used to obtain the
spatial variables of the structure using its flexural natural
frequencies and mode shapes. The database used for train-
ing the NNs was generated through a simplified finite
element model.

The method was simulated on a 5-storey office building.
The testing process of the NNs shows that the damage pre-
dictions for unseen random data are very similar to target
values, which demonstrates the robustness of the method.
The sensitivity analysis of the live mass variability illus-
trates the influence of this variable in the results of the
method. The analysis shows that the prediction errors
can reach an order of magnitude even higher than the tar-
get values if mass is considered constant. This means that is
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necessary to include the mass as an output variable in order
to obtain accurate results. The influence of modal data
errors was also studied. The statistical analysis shows that
the method is quite sensitive to them, especially to mode
shapes ones. For simulating the error, a Gaussian noise
was added independently to the modal parameters and
the damage obtained was compared to the reference one.
It is shown that the coefficient of variation of the modal
errors should be less than 0.1% for natural frequencies
and 0.02% for mode shapes to obtain absolute values of
the damage prediction errors up to 0.05 with a 95%
confidence.
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