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In order to meet the fast growing LNG (Liquefied Natural Gas) demand, many LNG importation terminals
are now in operation. Therefore, it is important to estimate potential risks of LNG terminals using LOPA
(Layer of Protection Analysis), which can provide quantified results with less time and effort than other
methods. For LOPA applications, failure data are essential to compute risk frequencies. However, available
failure data from the LNG industry are sparse and often statistically unreliable. Therefore, Bayesian
estimation, which can update generic failure data with plant-specific failure data, was used to
compensate for insufficient LNG system failure data. This paper shows the need for the Bayesian–LOPA
methodology, how to develop the method, and a case study to demonstrate application of the method.
Finally, this paper proposes that the Bayesian–LOPA method is a powerful tool for risk assessment of not
only the LNG industry but also in other industries, such as petrochemical, nuclear, and aerospace.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

LNG refers to natural gas converted into its liquid state by super
cooling to �260 �F (�162.2 �C). LNG consists of 85–98% methane
with heavier hydrocarbon components. Thus, LNG is highly flam-
mable when it forms a 5 w 15% volumetric concentration mixture
with air at atmospheric conditions. LNG provides a cost-effective
containment as well as transportation across great distances
onshore and offshore at atmospheric pressure. Moreover, LNG is
environmentally friendly because of its clean burning.

Because of these properties, LNG demand has been growing to
diversify the energy portfolios and fulfill energy demand for LNG
fuel for many applications, including heating, cooking, and power
generation. Following the increasing demand for LNG, there are at
least 100 currently active LNG facilities across the U.S., including
importation terminals, peak shaving facilities, or baseload plants. In
addition, there are also a number of proposed projects for LNG
terminals in North America. In order to fulfill the increasing LNG
demand, it is necessary to build and operate more LNG importation
terminals to import LNG from other countries. Therefore, this paper
will focus on LNG importation terminals. Even though LNG has
several advantages, it may cause fire or explosion when it is dis-
charged at undesired conditions. Especially in LNG importation
: þ1 979 845 6446.
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terminals, large consequences may occur due to the huge amounts
of LNG stored. Thus, although the LNG industry has had an excellent
safety record over the past 40 years, risk related to LNG terminals
may be increasing with the growing LNG industry. Consequently,
risk-informed decisions founded on sound science are critical to
control risks related to LNG terminals.
2. Why use a Bayesian–LOPA method?

In order to control risk, it is necessary to quantify the risk by
applying risk assessment methodology. LOPA, as applied in this
paper, provides a straightforward and systematic approach to
obtain quantified risk results with less effort and time than other
methods, especially quantitative risk assessment (QRA).

For the application of LOPA methodology, failure data of
equipment and facilities are required to quantify the risk. However,
the LNG industry has a relatively short operational history
compared to other industries, such as the chemical industry, and
there are only a few incident records. Therefore, available plant-
specific failure data of LNG system are very sparse. The risk values
estimated with these insufficient data may not show statistical
stability or represent specific conditions of an LNG facility. Generic
failure data from other industries such as the petrochemical and
nuclear industries may be used for the LNG industry because they
have sufficient and longer-term historical records. However, these
data also may not provide appropriate risk results for the LNG
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Nomenclature

BOG Boil off gas
BV Block valve
EIReDA European Industry Reliability Data Bank
HAZOP Hazard and Operability Study
IPL Independent protection layer, which is one of the

safeguards that is capable of preventing an incident
scenario from proceeding to undesired
consequences

LNG Liquefied natural gas
LOPA Layer of protection analysis
MTBF Mean time between failures
OREDA Offshore reliability data
PFD Probability of failure on demand
PHA Process hazard analysis
PRV Pressure relief valve
QRA Quantitative risk assessment
TSV Temperature safety valve

Table 1
Summarized conjugate relationships.

Class Prior
distribution

Likelihood
function

Posterior
distribution

Frequency of initiating event Gamma Poisson Gamma
PFD of IPL Beta Binomial Beta
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industry because the operational conditions and environment of
LNG facilities are different from those of other industries.

Therefore, the Bayesian estimation can be used to obtain more
reliable risk values. Bayesian logic, named after Thomas Bayes who
found the theorem, can produce updated failure data using the
prior information of generic data from other industries and the
likelihood information of LNG plant-specific data. The updated data
can reflect both statistical stability from the generic data and the
specific conditions from the LNG plant data. In addition, Bayesian
estimation includes variability and uncertainty information to
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result in Bayes’ credibility or probability intervals, such as a 90%
credible interval of updated data, even though LNG plant failure
data are sparse. In other words, the weakness of failure data from
LNG industry can be reduced or overcome by the use of Bayesian
estimation. Therefore, the Bayesian–LOPA methodology, which was
newly developed in this paper, was used to conduct risk assess-
ments for an LNG terminal.
3. Methodology development

LOPA is a simplified form of quantitative risk assessment that
uses initiating event frequency, consequence severity, and the
probability of failure on demand (PFD) of independent protection
layers (IPLs) to estimate the risk of an incident scenario (Center for
Chemical Process Safety, 2001). Typically, LOPA builds on the
information developed during process hazard analysis (PHA) where
techniques, such as HAZOP and What-If methods, are employed to
develop incident scenarios. The purpose of LOPA is to estimate risk
values for a facility so that risk decisions can be made based on
tolerable risk criteria adopted by the facility. LOPA can also be used
to rank the estimated risk values of identified incident scenarios to
give priority to safety measures for higher risk scenarios and for
critical equipment that contribute significantly to the risk levels.
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Fig. 2. Schematic diagram of Bayesian estimation for initiating events.
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According to Wan (2001), Bayesian estimation is the basic tool
to combine a prior judgment and experimental information, based
on Bayes’ theorem. Modarres (2006) presents the Bayes’ theorem as
developed from the concept of conditional probability. The gener-
alized form of Bayes’ theorem for discrete variables is

PrhAjjEi ¼ PrðAjÞ$PrhEjAji
Pn

i¼1 PrðAiÞ$PrhEjAii
(1)

The right-hand side of Bayes’ equation consists of Pr(Aj), the
prior probability, and the remaining factor, the relative likelihood, is
based on evidential observations or plant-specific data. PrCAjjED,
which is updated probability of event Aj, is called the posterior
probability of event Aj given event E. The above equation means that
probability data can be updated by combining the prior probability
(from previous information) and the relative likelihood (from plant-
specific data). Typically, the selection of the prior distribution is
somewhat subjective, so a selection of a conjugate prior from the
same family of distributions as the posterior can make the choice
more objective for easier computation of the posterior parameters.
For a PFD (failure probability), a beta distribution for a prior distri-
butionwith a binomial likelihood function results in a conjugate beta
posterior distribution, as shown in Table 1. For a failure frequency,
a gamma distribution for a prior distribution with a Poisson likeli-
hood function results in a conjugate gamma posterior distribution.

The Bayesian–LOPA methodology is an advanced LOPA method,
because it can yield more statistically reliable or concrete risk
results in an LNG facility than normal LOPA methods. Fig. 1 shows
the procedure of the Bayesian–LOPA method.
As a PHA method, a Hazard and Operability (HAZOP) study
(Crowl & Louvar, 2002) will be used because it is one of the most
systematic hazard identification methods. The HAZOP method
requires process information such as Piping and Instrument
Diagrams (P&IDs) and process flow diagrams, which include basic
designs and minimum specifications adopted from industrial
standards such as NFPA 59A (National Fire Protection Association,
2001) and EN 1473 (Committee of European Nations, 1997) for an
LNG terminal. Results from a HAZOP study are used to make inci-
dent scenarios, which can be pairs of causes and consequences. The
incident scenarios are screened according to severity by the cate-
gory method, which is a qualitative way to classify consequences
using engineering expert judgment.

Causes found in the HAZOP results may be initiating events of
incident scenarios. After identifying an initiating event, its occur-
rence frequency should be obtained for a LOPA application. Based
on Bayesian estimation, the frequency of an initiating event can be
obtained by using a conjugate gamma distribution for the prior
information and a Poisson distribution for the likelihood function
as shown in Table 1 and Fig. 2. Offshore reliability data (OREDA)
(SINTEF Industrial Management, 2002) can be used in this manner
as prior information, because data were produced from a gamma
distribution. Fig. 2 also shows some formulas for not only gamma
and Poisson distributions, but also mean value and 90% credible
interval of Bayesian updated posterior values. If there is no prior
information, the Jeffreys non-informative prior (Sandia National
Laboratories, 2003) may be used. For the plant-specific likelihood
information, the LNG plant failure database (Johnson & Welker,
1981), which was established from 27 LNG facilities, is used. This
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database provides operating hours, number of failures, and mean
time between failures (MTBFs) of equipment or facilities.

After obtaining the frequency data of an initiating event, it is
necessary to identify each independent protection layer (IPL),
which can be found and chosen in the list of safeguards of each
incident case in the HAZOP results. However, even though all IPLs
can be safeguards, not all safeguards are IPLs, because IPLs must
meet the three requirements: independence, effectiveness, and
auditability. Thus, very careful consideration should be taken to
designate a safeguard as an IPL. Following IPL identification, the
PFD of each IPL should be obtained. Generally, this procedure is
Table 2
LOPA incident scenarios in an LNG terminal.

No. Scenarios

1 LNG leakage from loading arms during unloading.
2 Pressure increase of unloading arm due to block valve

failed closure during unloading.
3 HP pump cavitation and damage due to lower pressure of

recondenser resulting from block valve failed closure. Leakage and fire.
4 Higher temperature in recondenser due to more boil off gas (BOG)

input resulting from flow control valve spurious full open.
Cavitation and pump damage leading to leakage.

5 Overpressure in tank due to rollover from stratification and
possible damage in tank.

6 LNG level increases and leads to carryover into annular
space of LNG, because operator lines up the wrong tank.
Possible overpressure in tank.

7 Lower pressure in tank due to pump-out without BOG input resulting
from block valve failed closure. Possible damage of tank.
similar to the case of initiating events, but there are a few differ-
ences in the distributions and mathematical calculations. The PFDs
of IPLs can be estimated using the conjugate beta prior distribution
and binomial likelihood distribution, as shown in Fig. 3.

EIReDA (European Industry Reliability Data Bank) (Procaccia,
Arsenis, & Sopyros, 1998) will be used for prior information,
because it was prepared from a beta distribution. When EIReDA
does not provide failure data, the newly developed frequency-PFD
conversion method (Yun, 2007) may be used. LNG plant failure data
will be represented by a binomial likelihood function. However,
even though some types of failure data are available, the EIReDA
database does not provide the number of demands, which is
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Fig. 4. Frequency of a spurious trip of a block valve closure by Bayesian estimation.
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needed together with the number of failures for the binomial
distribution. The number of demands can be estimated, however,
by correlation using the PFD estimating equation as shown in Fig. 3,
provided periodic tests of equipment are performed that reveal the
failures (Crowl & Louvar, 2002; Yun, 2007; Sandia National Labo-
ratories, 2003).

The next step is to use a spreadsheet to calculate the frequency
of an incident scenario from the equation given in the ‘‘Estimate
scenario frequency’’ step of Fig. 1. In this paper, Microsoft EXCEL
software is used.

The last step is to make risk decisions from comparison of an
obtained scenario frequency to tolerable risk criteria, which may be
specified by companies, industries, or government. The CCPS
(Center for Chemical Process Safety, 2001) states that for human
fatalities, the frequency criterion for tolerable risk is less than
1� 10�4=year. If the estimated frequency cannot meet the tolerable
criteria, some recommendations that may include additional IPLs or
more frequent proof tests must be given to reduce the incident
frequency or mitigate the severity of consequence. As shown in
Fig. 1, these steps will be repeated for every incident scenario. The
frequencies of all incident scenarios will be estimated and then
compared to each other to rank the risks among all scenarios with
similar consequence severities. This risk ranking may be used also to
develop strategies for maintenance or safety measures.

4. Case study results and validations

During the HAZOP study, seven incident scenarios were devel-
oped as shown in Table 2. As an example of a Bayesian–LOPA
Table 3
LOPA spreadsheet of incident scenario 2 (Bayesian updated results).

Scenario no. 2 Scenario title: pressure increas
to block valve failed closure du

Date Description

Consequence description/category Pressure increase of unloading

Risk tolerance criteria (frequency) Tolerable

Initiating event (frequency) During unloading, block valve

Frequency of unmitigated consequence

Independent protection layers A TSV along transfer line

Total PFD for all IPLs

Frequency of mitigated consequence (/year)

Risk tolerance criteria met? (Yes/No) Yes

Actions required to meet risk tolerance criteria 1. A PSV may be installed befor
as a PSV in case of overpressur

Notes 1. Unloading arm and pipe was
shut-off pressure of ship pump
application, scenario 2 will be described briefly. For emergency
shutdown, a block valve, BV-1, is installed to stop the flow of LNG in
the LNG unloading pipeline. However, if the valve is closed inad-
vertently during the unloading procedure, the pressure within the
unloading arms and pipelines will be increased to the level of the
shut-off pressure of the ship pumps and may cause undesirable
consequences in the arms or pipelines.

As an initiating event, the frequency of the spurious trip of
a block valve closure can be estimated with the OREDA data and the
LNG facility failure data using Bayesian estimation. OREDA provides
the failure frequency of a spurious operation for a shut-off valve, so
the OREDA frequency is used as prior information. The Bayesian
estimated frequency data are given in Fig. 4, which shows that the
posterior value of failure frequency is located between the prior
and likelihood values. The posterior value is shown to be based on
the historical prior and the current likelihood information using the
Bayesian engine. That is to say, the posterior value reflects both
long-term based historical experiences from the OREDA generic
data and short-term based plant-specific conditions from the LNG
facility failure data. It is important to be aware that as the sample
size of likelihood information becomes larger, the posterior value
becomes closer to the likelihood value than to the prior value, i.e.,
uncertainty is reduced. Thus, it is better to use larger sample data
set of likelihood information to obtain more accurate updated
posterior values. The vertical line of the posterior column indicates
the 90% Bayesian credible frequency interval from 0.0019/year to
0.0099/year.

For this scenario, one IPL involving the temperature safety valve
(TSV) may be considered. The PFD of a TSV can be estimated with
the EIReDA data and the LNG facility failure data. EIReDA provides
the PFD mean value and the values of a and b parameters of the
beta distribution for the pressure relief valve (PRV). A TSV and PRV
have a similar design configuration, so the PRV failure data are used
also as prior information for the TSV. The LNG failure database
provides the operating hours, number of failures, and MTBF of the
cryogenic valves including the PSVs. The Bayesian estimated PFD of
a TSV is shown in Fig. 5. The vertical line of the posterior column
indicates the 90% Bayesian credible probability interval from
0.0004 to 0.0007.

Consequently, the mitigated failure frequency of scenario 2 can
be estimated using the LOPA spreadsheet as shown in Table 3. For
the risk determination, the estimated posterior risk value, 2.90E-6/
year, can be compared to the tolerability criterion of less than
1.00E-4/year. Based on this comparison, the risk decision is that
e of unloading arm due
ring unloading
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scenario 2 is tolerable. Fig. 6 shows that the posterior failure
frequency of scenario 2 is located between the prior and likelihood
values.

Consequently, for all seven incident scenarios, it is proved that
the Bayesian–LOPA method produces valid and well-updated risk
values in terms of the fact that the posterior value of every initiating
event or IPL is located between the prior and likelihood values.
Fig. 6 provides seven risk value graphs that show prior, likelihood,
and Bayesian posterior values to check the differences. Additionally,
Fig. 6 shows the incident scenario risk ranking based on frequency,
which can be used to decide the priority of additional safety
measures.
5. Conclusions

As indicated by the good safety record of the LNG industries, it
can be generally concluded that a LNG terminal has good safety
protection to reduce the probability of upset events as shown in
Fig. 6. However, careful caution should be taken that this conclusion
is based only on the information that is available to the public, so
the results or recommendations may not accurately represent a real
LNG terminal. The newly developed Bayesian–LOPA methodology is
a powerful tool for risk assessment in LNG importation terminals
due to the sparse plant-specific data and the relatively short
operational history. Similarly, the methodology can be applied in
other industries including refineries, petrochemicals, nuclear
plants, and space industries to obtain more reliable risk values.
Moreover, it can be used with other frequency analysis estimation
methods such as Fault Tree Analysis (FTA) and Event Tree Analysis
(ETA) to strengthen their results.
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