
OpenFlow SDN testbed for Storage Area Network
O. Sadov, V. Grudinin, A. Shevel, D. Vlasov, S. Khoruzhnikov, V. Titov, A. Shkrebets, A. Kairkanov

ITMO University,
Russia

http://sdn.ifmo.ru

Abstract—The paper describes the testbed to determine the
effectiveness of an approach to build network storage using
Software-De ned networks (SDN) OpenFlow. It is assumed that
main protocol to SAN is iSCSI over local area network.
Prototyping tools for managing network resources and data ows
on the basis of SDN and testing environments based on Free and
Open Source software. We describe experiments with various
modi cations of OpenFlow controller NOX and set out the speci cs
for the use of various software and hardware OpenFlow switches.
The main tests goals are Data Center SAN speci c: implementation
of QoS methods accordingly switchspeci cs, topology changing,
measuring of transmission parameters, simulating of large amount
of requesting hosts (up to 100 thousands hosts).

Keywords—OpenFlow; SDN; SAN; network; NOX; QoS

I. INTRODUCTION
The aim of this work was to study the design principles and

performance of Software-De ned Networks, as well as to
develop prototypes of tools for managing network resources and
data ows in SDN, the evaluation of the applicability of the SDN
for data centers and distributed storage. For experiments were
selected OpenFlow SDN and evaluated the effectiveness of their
use for the management of iSCSI storage systems.

The requirements were speci ed for network resources
management tools and Quality of Service (QoS) assurance.

II. TESTBED

A. Software:
OpenFlow software switch based on
CPqD/of12softswitch [1] and Open vSwitch [2];

OpenFlow controllers based on CPqD/nox12o ib [3]and
NOX [4];

OpenFlow network emulator Mininet [5];

VirtualBOX and KVM Virtual Machines with NauLinux
6.3/6.4 [6] distributions and Ubuntu 11.10 pre-con gured
CPqD OpenFlow-1.2 Virtual Machine [7].

B. Hardware
OpenFlow switches – Pica8 3290 and HP 3500-24G-PoE
yl.

HP P4300 G2 7.2TB SAS Starter SAN BK716A was used
as the iSCSI SAN.

III. SPECIALIZED SOFTWARE MODULES
For testing purposes was created a number of specialized

Python modules and programs which used for changing of
topology, QoS policies, starting/stopping of traf c generators and
measuring of transmission characteristics. Developed prototypes
were tailored for the hardware OpenFlow switches.

Specialized “switchqos” module was developed based on
NOX module “switch” to manage network resources and data

ows and to ensure QoS.

This module calculates routes for all packets in the testbed
and generates ow tables for every OpenFlow switch. These
calculations and ow tables modi cations are performed after
every topology change or data ow interruption.

The traf c classi cation for QoS control is based on
TCP/UDP port numbers. Depending on switch type and
capabilities, the different QoS control methods were used:
OpenFlow queues, IP ToS, and VLAN PCP modi cations.

Special software tools for QoS policy con guration of
hardware switches were used to prioritize SAN traf c. The
different switches (for example, Open vSwitch and HP
ProCurve) had different QoS control mechanisms, which made
the creation of a uni ed interface is quite a dif cult task.

As the most important con gurable parameters of QoS
assurance, the bandwidth and the priority of the packet queues
were selected.

The software prototypes for QoS control on HP 3500 and
Pica8 in OVS mode were placed in the repository [8]. They can
be easily extended to use different QoS settings.

Because different switches and controllers support variety
versions of OpenFlow, several different modules were developed
for NOX classic [8], NOX [4] and nox12o ib [3].

IV. NETWORK RESOURCES AND DATA FLOWS
MANAGEMENT

As a system for network resources and data ows
management, a set of software modules was developed for
attaching and detaching links between switches.

In the emulation mode, this was carried out by means of
Mininets Python module.

For hardware switches this was done via CLI commands over
SSH connection, automated by a Python script.

978-1-4799-7595-2/14/$31.00 ©2014 IEEE

Fig. 1. Loop topology for experiments

A loop topology (Fig. 1) was selected for experiments,
consisting of 4 switches (nodes s2, s3, s4 and s5), and two hosts
for traf c generation and reception (nodes h1 and h6).

SDN routing modules based on standard regular MAC-
learning NOX “switch” modules.

During the experiment, test traf c (ping) was sent from the
host h1 to host h6. In an initial state all nodes were connected
accordingly Fig. 1. The controller was in an unde ned state, it
had no routing scheme, and the packets have not passed. After
detaching one link by test framework, the route was constructed
by NOX “switchqos” module, and the pass of the packets was
established. After that, the restoring of the detached link (and
loop) did not break the traf c ow. Detaching the active link led
to an automatic topology rediscovery and redirection of the
traf c to a different route.

V. QOS ASSURANCE METHODS
Data ows prioritization was carried out with the Python

modules. These modules set bandwidth for OpenFlow queues or
ToS/PCP bandwidth. The dpctl utility was used for the software
switch control. Hardware switches were managed by CLI
commands sent over SSH.

For the evaluation of a possible use of SDN in data center, a
data center model (Fig. 2) was created. This model consisted of
iSCSI SAN and few VMs. The rst VM acted as an OpenFlow
1.2 switch while the second one generated iSCSI traf c; the
others performed in generating and receiving the load traf c.

During the experiment, the data were read from iSCSI SAN
with simultaneous load traf c generation.

IP diagnostic utility Iperf and VoIP test tool SIPp were used
to generate the load traf c.

Fig. 2. SDN data center model

It was observed that under heavy load condition the iSCSI
connectivity might be lost and later recovered. After iSCSI
connectivity recovery the bandwidth is changing in arbitrary
manner. To keep the same bandwidth after recovery we changed
Linux Traf c Control dynamic bandwidth, which is de ned by
CpqD/of12softswitch, to static bandwidth setting. The modi ed
module can be found in [1].

The utility dpctl sets the share of total bandwidth for selected
QoS queues as percent of total bandwidth. The sum of shares is
not necessary equal to 100.

Table I shows the in uence of the presence of queuing on the
resulting SAN I/O speed, but there is a little difference.

The experiment with the HP hardware switch has shown a
correlation between the bandwidth share set and the resulting I/O
speed (Fig. 2).

TABLE I. SAN I/O SPEED THROUGH SOFTWARE SWITCH
DEPENDENCY ON QOS QUEUES BANDWIDTH SHARE

Bandwidth share, in % of the total Load traf c,
Kb/s SAN I/O speed iSCSI traf c

100 0 35.1
100 0.1 31.6
100 100 8.3
0.1 100 5.4
0.1 0.1 9.2

TABLE II. SAN I/O SPEED THROUGH HARDWARE SWITCH
DEPENDENCY ON QOS QUEUES BANDWIDTH SHARE

Bandwidth share, in % of total Load traf c,
Mb/s SAN I/O speed iSCSI traf c

100 0 10.0
80 20 8.4
20 80 2.1
0 100 0

Not comparing the absolute transmission rate, it is possible,
due to a priori restricted channel throughput, to specify the
advantages of QoS control in hardware switches: a high degree of
accuracy, an impossibility of setting a total bandwidth more than
100%.

VI. PROCESSING A LARGE NUMBER OF REQUESTS
In the test program (rd test) SCSI command “TEST UNIT

READY” was sent to SAN in multithread mode via ioctl system
call with SG IO code. The target characteristic was the number of
completed requests for a selected period of time.

The developed “switchqos” module was optimized for speed
of transmission of data passing through controlled switches. This
optimization included a modi cation of the default NOX ow
matching scheme. It was necessary because the used switches
were unable to perform a ow match based on source and
destination MAC addresses and VLAN PCP with the hardware
acceleration. The software processing was limited to 10 000
packets per second.

Another setting was in increasing the idle timeout. It was
found during the experiments that HP 3500 switch had not
refreshed the ow packet statistics frequently enough for the
hardware processed ows. Usually, after 5 seconds of idle time
(default for NOX “switch” module), the switch erroneously
removed the record from the ow table. After increasing the idle
time parameter in “switchqos” module to 20 seconds, this
behavior was corrected and the necessity for repeatedly creating
records of ow matching was eliminated. At the same time, an
excessively large idle timeout value could degrade the
performance due to an increased ow table size.

After these optimizations, the performance of the system
increased signi cantly, and the value of 100 000 requests to SAN
per second through OpenFlow switch was surpassed. The
example of test program output is shown below.

./rd_test /dev/sdb 2 100

Fig. 3. Modeling the large number of requests to SAN in data center
infrastructure

Result: 130124 requests/sec (260248/2)

VII. SAN RESPONSE TIME
Read operations were used to measure SAN response. SG IO

ioctl was used to exclude the buffering in uence, instead of the
generic read.

The test program has measured the average latency and jitter
performing SAN requests.

The results for 1000 packets and data block sizes 512 and
1024 bytes are as follows (the average latency and jitter are
measured in seconds):

./rtt_iscsi_read /dev/raw/raw1 1000 \ 512 1024

Size=512 Packets=1000 Latency=0.000844 Jitter=0.000084

Size=1024 Packets=1000 Latency=0.000860 Jitter=0.000104

VIII. DATA CENTER MODELING
Our modeling of a data center involved a transmission of

ICMP requests to SAN from different MAC addresses.

The test network consisted of SAN, 2 hardware OpenFlow
switches from HP, VM with NauLinux 6.3 guest OS running
NOX and 10 test nodes VMs running Ubuntu 11.10 and Mininet.
Each test node launched 6 virtual hosts, 7 software switches
Open vSwitch, and a local controller NOX (Fig. 3).

The test program, running on the main host, sent messages to
the test nodes, starting local test programs, written as xinetd
services. The local test programs on every virtual host pinged
SAN from every MAC address in a speci ed range. Requests
were forwarded to SAN through hardware switches, controllable
by NOX launched in multithread mode (10 threads) on the main
host. This controller instance has logged the number of different
MAC addresses in the processed requests and the requests
distribution in the running threads. After getting 100 000
different MAC addresses, test programs stopped.

IX. CONCLUSION
Described experiments have shown that developed OpenFlow

testbed could be used for testing the dynamic (re)con gurations
of the network elements, (re)setting various data transfer
parameters for different traf c types. It was shown the testbed is
able to serve the requests from large number of hosts. Suggested
inexpensive testbed might be used for detailed investigation of
OpenFlow approach to the network architecture of data centers
and distributed storage.

Software repositories [1], [3] and [4] contain developed
software modules and tests. The controller applications are
packaged in binary and source forms for NauLinux operating
system distribution [6], binary compatible with RHEL/Oracle
Linux/CentOS/Scienti c Linux distributions.

REFERENCES
[1] ITMO OpenFlow 1.2 software switch repository, avail-able at

https://github.com/itmo-infocom/of12softswitch
[2] Open vSwitch project, available at http://openvswitch.org
[3] ITMO OpenFlow 1.2 NOX repository, available at

https://github.com/itmo-infocom/nox12o ib
[4] ITMO NOX repository, available at https://github.com/ itmo-infocom/nox
[5] Mininet, available at http://mininet.github.com
[6] NauLinux distribution, available at http://downloads.

naulinux.ru/pub/NauLinux/
[7] CPqD OpenFlow-1.2-Tutorial, available at https://

github.com/CPqD/OpenFlow-1.2-Tutorial/wiki
[8] ITMO OpenFlow tests repository, available at https:// github.com/itmo-

infocom/of-tests

