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In intelligent transportation systems (ITS), transportation infrastructure is complimented with informa-
tion and communication technologies with the objectives of attaining improved passenger safety,
reduced transportation time and fuel consumption and vehicle wear and tear. With the advent of modern
communication and computational devices and inexpensive sensors it is possible to collect and process
data from a number of sources. Data fusion (DF) is collection of techniques by which information from
multiple sources are combined in order to reach a better inference. DF is an inevitable tool for ITS. This
paper provides a survey of how DF is used in different areas of ITS.
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1. Introduction

Providing accurate traffic information is becoming a major chal-
lenge for the public institutions and private companies leading to
the rapid growth of intelligent transportation system (ITS) [1]. At
the same time, the emergence of new information technologies
and the transformation that has occurred in road traffic manage-
ment has both increased a need for very accurate road traffic infor-
mation. In order to provide an accurate and more comprehensive
traffic state on a road network, the traffic sensors that are usually
used to measure the prevailing traffic conditions are ineffective.
Other sources of data (such as cameras, GPS, cell phone tracking,
and probe vehicles) are increasingly used to supplement the infor-
mation provided by those conventional measurement systems. In
addition, authorities normally keep track of traffic activities and ar-
chive such information. This offline information, together with the
measurements from other sensors is often found to be useful in
predicting the traffic trend. Multiple sources may provide comple-
mentary data, and multi-source data fusion can produce a better
understanding of the observed situation by decreasing the uncer-
tainty related to the individual sources. The fusion of multiple
sources is perceived, rightly, as a well-adapted answer to the oper-
ational needs of traffic management centers and traffic information
ll rights reserved.

Faouzi), leungh@ucalgary.ca
urian).
operators, allowing them to achieve their goal more efficiently. The
primary goal of this survey paper is to acquaint the reader with the
most significant applications of data fusion (DF) techniques in
intelligent transportation systems and to indicate the directions
for future research in this area.

The paper is organized into five sections. Section 2 describes ba-
sic traffic engineering operations with emphasis on data sources
available. DF applications to the traffic engineering area are pre-
sented in Section 3. Section 4 describes prospective research anal-
ysis with conclusions in Section 5.
2. Data fusion background

Data fusion is applied in diverse fields in civilian and military
applications such as surveillance and reconnaissance, wildlife hab-
itat monitoring, and detection of environment hazards [2–5]. Sev-
eral methodologies have been proposed in the literature for the
purpose of multi-sensor fusion and aggregation under heteroge-
neous data configurations. Due to the different types of sensors
that are used and the heterogeneous nature of information that
needs to be combined, different data fusion techniques are being
developed to suit the applications and data. These techniques were
drawn from a wide range of areas including artificial intelligence,
pattern recognition, statistical estimation, and other areas. Traffic
engineering field has naturally benefited from this abundant liter-
ature. For instance, independent of specific application a variety of
techniques can be used for ranging from a sample arithmetic mean
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to a more complex DF approach. More precisely, a three-way split
could be suggested:

– Statistical approaches: weighted combination, multivariate sta-
tistical analysis and its most up-to-date form data mining
engine [6]. Among statistical techniques, the arithmetic mean
approach is the simplest which is used for information combi-
nation. This approach is not suitable when the information at
hand is not exchangeable or when estimators/classifiers have
dissimilar performances [7–9].

– Probabilistic approaches: for instance, Bayesian approach with
Bayesian network and state-space models [10], maximum like-
lihood methods and Kalman filter based DF [11,12], possibility
theory [13], evidential reasoning and more specifically evidence
theory [14–16] are widely used for the multi-sensor data fusion.
This later technique could be viewed as a generalization of
Bayesian approach [15–17].

– Artificial intelligence: neural networks and artificial cognition
including artificial intelligence, genetic algorithms and neural
networks. In many applications, this later approach serves both
as a tool to derive classifiers or estimators and as a fusion
framework of classifiers/estimators [6,8].

Although application of DF techniques to complex systems
modelling is not new [18–20], there is a growing interest in their
use in transportation systems. Road traffic could be considered as
a field where benefits expected from the application of DF tech-
niques are fruitful. However, the benefits come with challenges
in assessing feasibility, effectiveness and usefulness of such ap-
proaches [21–23]. In traffic engineering literature, the interest for
DF is quite new and it coincides with ITS advent. The first paper
which mentions the DF was by Sumner in the early 1990s [24].
He acknowledges the importance of DF for effectiveness of ITS
systems. Numerous papers exist regarding the application of DF
in engineering [22,25,26].

Many of the data processing techniques originally developed by
the US Department of Defence (DoD) to support the identification
and tracking of military objects can be used today to aid traffic
management on streets and highways [28–32]. The DoD data fu-
sion model consists of a hierarchy of five processing levels. Level
0 deals with pre-processing of data from the contributing source.
It may normalize, format, order, batch, and compress input data
[2,30]. It may even identify sub-objects or features in the data that
are used later in Level 1 processing. For traffic management, Level
1 processing concerns the gathering of data from all appropriate
sources, including real-time point and wide-area traffic flow sen-
sors, transit system operators, toll data, cellular telephone calls,
emergency call box reports, probe vehicle and roving tow truck
messages, commercial vehicle transmissions, and roadway-based
weather sensors [26,27]. Level 2 processing identifies the probable
situation causing the observed data and events by combining the
results of the Level 1 processing with information from other
sources and databases. These sources may include patrol reports
and databases, roadway configuration drawings, local and national
weather reports, anticipated traffic mix, time-of-day traffic pat-
terns, construction schedules, and special event schedules. Level
3 processing assesses the traffic flow patterns and other data with
respect to the likely occurrence of a traffic event (e.g., traffic con-
gestion, incident, construction or other pre-planned special event,
fire, or police action) that impacts traffic flow. Level 4 processing
seeks to improve the entire data fusion process by continuously
refining predictions and assessments, and evaluating the need for
additional sources of information. Sometimes a sixth level is added
to address issues concerned with enabling a human to interpret
and apply the results of the fusion process. The DF process investi-
gated in traffic literature involves basic functions such temporal
or/and spatial alignment of input data, data association and data
mining for knowledge extraction purpose. This later purpose is also
one of potential objectives of a multi-source information fusion
[33].
3. Opportunities and challenges of ITS data fusion

Technological advances in the area of road telematics (such as
on-board electronic systems, vehicle localization mechanisms,
telecommunications, and data processing) have favoured an
improvement in existing means of traffic data collection. This in-
cludes the invention of sensors or new architectures: equipment
on board vehicles, off-set on the side of roads, multiform data col-
lection, etc. Basic traffic data is largely based on road sensors
embedded in the pavement. Such sensors mostly use inductive
loop detectors (ILDs) and are able to measure temporal traffic char-
acteristics. They detect basic parameters needed by operational
traffic engineer, such as traffic volume, occupancy and speed at a
given point. Other fixed sensors such as optical detectors, ultra-
sonic detectors were developed and used for network surveillance.
These fixed sensors are very useful, but they fail in measuring spa-
tial behaviour of traffic. In addition they suffer from their limited
reliability, with their prohibitive cost in attaining significant cover-
age of the roadway network. Other fixed sensors with spatial capa-
bilities have been developed and used to supplement loop detector
data: cameras, RMTS (Remote Traffic Microwave Sensor), etc.

With the recent deployment of ITS applications and needs for
real-time and accurate data to fulfil a wide range of purposes
(real-time traffic operations monitoring, incident detection and
route guidance applications), have given rise to another comple-
mentary source of data allowing traffic parameter estimation.
One of the actual trends is probe vehicle data collection technique,
also known as Floating Car Data (FCD) and its extended version
(xFCD). According to this technique, cars on the road shift from a
passive attitude to an active one and act as moving sensors, contin-
uously feeding information about traffic conditions to a Traffic
Management Center (TMC). More recently, within cooperative sys-
tems, research was carried out where vehicles are connected via
continuous wireless communication with the road infrastructure,
exchanging data and information relevant for the specific road seg-
ment to increase overall road safety and enable cooperative traffic
management. Different automatic vehicle identification (AVI) sys-
tems, based on different technologies, can be used as detection de-
vices: automatic vehicle tags identification, automatic license plate
matching techniques, and global positioning system (GPS). With
the advances in wireless communications and the spread of
cellular phones, technical developments in cellular positioning
provides the opportunity to track cell phone equipped drivers as
traffic probes. Many research studies have demonstrated the
feasibility of using cell phones as traffic probes [34,35].

Therefore, a wide spectrum of data and heterogeneous sources
of information are of potential use for a given traffic situation. As
a result, many problems of traffic engineering become a typical
data fusion problem. Indeed, some of the basic road traffic engi-
neering used to meet operators needs have been gained through
the conventional fixed detectors. However, in the context of traffic
operations where highly accurate information are needed, ITS
framework for instance, the information provided by fixed detec-
tors data alone may be not sufficient except in some special situa-
tions (for some network configuration and/or with a high detector
coverage). One of the reasons is the lack of full traffic information
at the network wide scale is of importance. So, for traffic opera-
tions improvements, other sources of data are increasingly used
in order to supplement the information provided by conventional
measurement techniques. The purpose of DF is to produce an
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improved model or estimate of a system from a set of independent
data sources. For traffic applications, the desired model is the state
vector of the traffic phenomenon. These estimates may include
statements about current or future vehicular speeds, mean speeds,
travel time, vehicle classification and similar topics of interest to
travelers and traffic operators.
4. Its data fusion applications

El Faouzi and Lesort [7] and Sethi et al. [36] published the early
papers in which a practical traffic and transportation problem was
addressed as a data fusion problem. For the last 15 years, various
authors have made significant contributions to the field of DF in
transportation systems. ITS offers indisputably the most relevant
framework for DF and also the most challenging, see e.g. [21–23].
Others conventional problems in transportation modelling have
also being concerned with multi-source processing, namely: plan-
ning problems, demand estimation, traffic estimation, etc. [37].
A variety of functions are assigned to ITS to address the traffic
congestion and safety problems. These functions were designed
to achieve a specific task in order to cope with an operational prob-
lem. One can mention advanced traveler information systems
(ATIS), automatic incident detection (AID), advanced driver assis-
tance (ADAS), Network control, crash analysis and prevention,
traffic demand estimation, traffic forecast and monitoring and
accurate position estimation. Each of these sub-systems can make
use of different information sources. DF techniques can then be
used to combine them to yield better results.
4.1. Advanced traveler information systems

ATIS is one of the several ITS sub-systems that offer users inte-
grated traveler information. In ATIS, different automatic data col-
lection techniques are of potential use to comprehend traffic
conditions and derive relevant indicators to assist in driver guid-
ance [21]. One form in which the user’s information is presented
is the travel time, and a number of systems are based on its dis-
semination. In this context, it is used as a measure of impedance
(or cost) for route choice strategies. Travel time is also used by net-
work operators as an indicator of quality of service (QoS). This
raises the problem of estimating travel times with an acceptable
degree of accuracy which is a particularly difficult task in urban
areas as a result of difficulties of a theoretical, technical and meth-
odological nature. Thus, in order to find out the traffic conditions
that prevail on an urban road, the traffic sensors that are usually
used to measure traffic conditions are almost ineffective. New
measurement devices proliferation (cameras, GPS or cell phone
tracking, etc.) mean that other sources of data are increasingly
used in order to supplement the information provided by conven-
tional measurement techniques and improve the accuracy of travel
time estimates. As a result, travel time estimation becomes a typ-
ical DF problem.

Many authors discussed the statement of requirements of data
fusion for ADVANCE program [38–40]. ADVANCE was an in-vehicle
ATIS providing route guidance in real time that operates in the
northwestern portion and northwest suburbs of Chicago. It uses
probe vehicles to generate dynamic travel time information about
expressways arterials and local streets. ADVANCE uses a general
framework for combining data from loop detectors and travel time
reports of probe vehicles using inference rules. Evaluations of the
proposed algorithms found that probe data greatly improves static
(archival average) link travel time estimates by the time-of-day.
Dailey et al. [41] reports a detailed description of a current data
amalgamation (fusion) within ITS project and the presentation of
a new quantitative data fusion algorithm to estimate speed from
volume and occupancy measurements. Since then, many other
contributions present various frameworks for the evaluation of
ITS effectiveness based on data fusion. Data fusion approaches
are presented for various types of measures of effectiveness and
techniques for handling biases of various kinds are developed.

El Faouzi et al. [7,8,17] proposed an estimation framework for
real-time traffic characterisation based on multi-source data. As
an illustrative example, a multi-source travel time estimation
was performed based on two data sources: data from conventional
loop detectors which deliver Eulerian data and probe vehicles col-
lecting Lagrangian data. Travel time measurements collected by li-
cense plate matching technique were considered as a reference and
were used for validation purposes only. The first technique used is
of statistical nature and can be viewed as a distributed estimation
problem: each source derives an estimator of travel time and the
individual estimates are then combined according to weighted
mean strategy. The weights were derived from variance–covari-
ance estimation errors. Results display propensity of proposed
schemes for estimation accuracy improvement. More recently,
the evidence theory was used to solve the same problem [17,23].
In these contributions, travel time was broken into classes and
formulate the estimation problem as a classification one. Various
strategies for classifiers fusion were proposed and their evaluation
shown some improvements capabilities in terms of classification
rate.

Abe [42] reported work on travel time forecasting where data
from automatic vehicle identification devices were used for the
correction. Dynamic route guidance systems (DRGS) are also an
area where DF is of potential use. Kühne [43] has proposed a
framework for fusing information from various sources within
the DRGS. Once again, the objective is travel time estimation and
prediction. The data consists of loop detectors, probe vehicle and
QoS indicator with some exogenous information: information on
road works and incidents. The proposed solution was based on a
weighted mean scheme. The weights were derived according to
the source reliability. Choi [44] and Choi and Chung [45] have tack-
led the problem of generating travel time from loop detectors,
probe vehicles and video-camera sources. They proposed a fuzzy
logic based approach with its evaluation on a theoretical example.

4.2. Automatic incident detection

Incident detection methods for automatic recognition of inci-
dents, accidents and other road events requiring emergency re-
sponses have existed for more than tree decades. Most of the
developed and implemented algorithms rely on loop detectors
data. However, these algorithms work with mixed success. Re-
cently, there has been renewed interest in incident detection algo-
rithms partly because of the availability of new sensors and data
sources. One of these sources is probe vehicles. Hence, AID belongs
to the class of problems that can be solved by DF techniques. Appli-
cations of several data fusion techniques to traffic management to
support incident detection have been reported in the literature,
and the data fusion algorithms used includes Dempster–Shafer
inference, Bayesian inference, and voting logic. Most of these
applications have explored the use of probe vehicles data with
the conventional traffic data for incident detection purposes. As
an example of such work, Koppelman et al. [46], Ivan et al.
[47,48] developed an AID system using surveillance data from
two different sources: fixed detectors (e.g. inductive loop detec-
tors) and probe vehicle specially equipped to report link travel
time. The neural network approach was considered and two strat-
egies were tested. The first one combined observed traffic directly
to determine whether or not an incident is occurring. In the
second, separate incident detection algorithms individually pre-
process data from each source, reporting scores which are
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combined by neural network. Different neural network representa-
tions were studied in [48] and results found that probe and detec-
tor based incident detection on arterial networks shows
considerable promise for improved performance and reliability.
Dempster–Shafer inference or evidential reasoning was also used
to perform an operational AID system [49].

Thomas [50] has investigated this problem from a multiple
attributes decision making standpoint, with Bayesian scores. The
author proposed an approach which utilizes the combinations of
probe travel times, number of probe reports, detector occupancies
and volume as the inputs. It is shown that models based solely on
probe data lack in performance due to excessive overlaps in class
distributions and models based on detector occupancies and vehi-
cle counts by lane perform outstandingly. The probe data is shown
to enhance the performance of detector data based models. More
recently, Klein [51] studied the application of Dempster–Shafer
inference to the traffic management to support incident detection
and the identification of other events of concern to traffic manag-
ers. The application of the Dempster–Shafer inference algorithm to
incident detection and verification is illustrated with an example
consisting of three possible events, where data are supplied from
three different types of sources. The available information is com-
bined using Dempster’s rule and the most probable event is iden-
tified. Incident detection algorithms fusion is another direction
for classification accuracy improvement. This direction was inves-
tigated by Cohen [52]. In this paper three aggregation schemes
were investigated: a logical aggregation, a neural network fusion
and a veto procedure. From the validation step, which was carried
on real-world data, results demonstrated that both logical aggrega-
tion and veto procedure outperform the single best algorithm.

4.3. Advanced driver assistance

Passenger safety is considered as of the important aspects of
ITS. Driver assistance techniques are being developed from this
point of view. In the past few decades, tremendous progress has
been made with regards to vehicle safety and driver assistance.
Early safety approaches emphasize precaution and focus on pas-
sive devices such as seat belts, air bags and lighting. In spite of
crash-related injury severity rate reduction, drivers demand for
greater improvements in vehicular transportation safety. Research
trends show the use of active safety device which complements the
traditional passive ones. ADAS and collision avoidance systems
(CAS) are an illustration of such trends. The main objective as-
signed to these systems is to provide a more reliable description
of the traffic scene surrounding the vehicle to vulnerable road
users, in pre-crash situations and to systems like adaptive cruise
control (ACC) and collision avoidance systems. Simultaneous local-
ization and mapping is a technique used to obtain the static map of
the environment and its position in the map [53]. Automated high-
ways are another research topic where DF is an important area. On
the other hand, autonomous vehicles are gaining importance due
to their potential use in hazardous and unknown environments.
In any case, the vehicle needs to sense its environment with an ar-
ray of sensors and the sensory information needs to be used effec-
tively to provide decision support. Challenges involved are the
heterogeneous nature of the data and extracting relevant features
from the measurements. Typically, sensors of different capabilities
are used to gain complimentary information.

Simultaneous localization and tracking (SLAM) has been an ac-
tive research area in robotics for the last ten years. SLAM consists
of multiple parts; landmark extraction, data association, state esti-
mation, state update and landmark update. Since individual steps
can be achieved using a multitude of algorithms, there is no uni-
versally accepted algorithm for SLAM. Detection and tracking of
moving objects form another set of techniques used to obtain
information about the dynamic environment in which the vehicle
is operating [54,55]. Recently, there have been many commercial
products in the market capable of alerting drivers about lane
changes. In such systems, artificial intelligence techniques are used
with image processing tools to extract information from 2D and 3D
cameras. Initially, edge based lane detection techniques were used.
Since there is a good contrast between the road and lane markings,
thresholding of the images was found to be useful and the next
step would be a perceptual grouping of the edge points to detect
the lane markers of interest [56–58]. In ARCADE [59], which uses
slightly more advanced techniques than simple edge detection,
one-dimensional edge detection is followed by a least median
squares technique for determining the curvature and orientation
of the road. Individual lane markers are then directly determined
by a segmentation of the row-averaged image intensity values. Fre-
quency domain techniques for lane extraction are detailed in Kreu-
cher [60].

Operational systems are based on several sensor systems which
are complementary and redundant and a DF process provides a
fused description of the traffic scene. This fusion incorporates the
data of the available sensors into a single description. The prob-
lems to solve here are: Data association: sensor data have to be
associated with environment description, which require synchro-
nization of the sensor data and associated object state. Whenever,
there are multiple sensors used to sense multiple objects, there is a
need to associate the measurements with the individual objects
[2]. Once the sensor measurements are associated with appropri-
ate objects, the next step is to remove the sensor bias. This proce-
dure is called sensor registration. Finally, objects are tracked using
fused sensor measurements. Again, Kalman filter, its variants and
more recently particle filtering become an essential tool to perform
this step [61]. Several papers report some results within this topic.
For example, Murphy [62] discussed sensor fusion’s role in-vehicle
guidance and navigation, and proposed general methods for fusing
data, and sensor-fusion activities within a robot architecture. In
their work, Pei and Liou [63] proposed three-dimensional vehicle
motion estimation by fusion of multi-source information. Image
point and line features were considered for fusion. Langheim
et al. [64] investigated DF systems for Automatic Cruise control
with stop and go phenomenon, and Stiller et al. [65] reported a
DF framework for obstacle detection and tracking.

4.4. Network control

Data fusion techniques were also applied in the road network
control issues. In [66] and [67], the problem of constructing an
adaptive online traffic control in urban or freeway road networks
was investigated. Mueck work’s [66] a model that determines
queue length on the basis of vehicle counts from detectors located
close to the stop line and on the basis of signal timings was de-
rived. Wang and Papageorgiou [67] performed the freeway traffic
control using extended Kalman filter. Along this direction, Fried-
rich et al. [68] introduced a new approach based on in queuing the-
ory models for real time queue length determination. In this later
method, Mueck’s model serves as a quasi measurement with Kal-
man filtering technique.

4.5. Crash analysis and prevention

Although there has been a steady reduction in the number of
accidents, they continue to sustain heavy losses in both human
and economic terms. Reduction in the number of accidents could
be due to multiple efforts: road infrastructure improvement, regu-
lations on alcohol and speed, and an improvement in-vehicle
safety. Many studies were carried out in order to explain the
circumstances and the characteristics of traffic accidents. One
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way to conduct such explorative studies is to utilize retrospective
data available such as traffic accident records. Along this direction,
Sohn and Shin [69] employed both neural network and decision
tree algorithms to find the classification model for road traffic acci-
dent severity (bodily injury or property damage) as a function of
potentially related categorical factors. They noted that the classifi-
cation accuracy of the individual algorithm was relatively low. Rec-
ognizing that, Sohn and Lee [70] use data fusion and ensemble
algorithms to increase the accuracy. DF techniques are used to per-
form classifiers fusion using the evidence theory. Data ensemble
combines various results obtained from a single classifier fitted
repeatedly based on several bootstrap samples [71–74]. More pre-
cisely, they tried three different approaches: classifier fusion based
on the Dempster–Shafer algorithm, the Bayesian procedure and lo-
gistic model; data ensemble fusion based on arcing and bagging;
and clustering based on the k-means algorithm. Empirical results
indicate that a clustering based classification algorithm works best
for road traffic accident classification.

4.6. Traffic demand estimation

One of the most important problems in the field of transporta-
tion planning and control is the problem of origin–destination esti-
mation from link counts. In order to decrease the cost of passenger
surveys, traffic count are undertaken on certain links of the trans-
portation network. An estimation of a most likely origin–destina-
tion matrix is then derived from counts. In the last two decades
a greater number of models have been developed for Origin–desti-
nation (OD) estimation from link counts. Some of the proposed
schemes derived the OD matrices by combining data from different
sources. An illustration of this class of problems is the dynamic OD
estimation initiated in [75,76]. Further developments along the
same line were pursued later by many authors [10,77]. The Kalman
filtering is of common practice in this class of problems. Ben-Akiva
and Morikawa [78] have explored the OD estimation methods that
combine different data sources (stated preference data and traffic
measurements) and more recently, Lundgring et al. [79] described
a method for adjusting time-dependent travel demand information
with respect to link flow observations. They utilized the structure
of the given OD-matrix, which is compounded from different
sources, for making simple overall adjustments.

4.7. Traffic forecasting and traffic monitoring

Traffic flow forecasting has received increasing attention in the
past years and different techniques have been developed mainly
for traffic surveillance and control. Many prediction schemes of
traffic flow were obtained by means of classic autoregressive mod-
els, especially time series techniques. Some authors have tackled
this problem in the context of Bayesian framework [80]. Some oth-
ers used Kalman filtering technique [81] or neural networks and
system identification [82] and more recently a nonparametric par-
adigm was adopted via kernel techniques [83]. None of these pro-
posals allow one to achieve highly accurate predictions except in
some special situations (for some network configuration and/or
with high detector coverage). This is induced to some extent by
traffic dynamic which cannot be formalized by a single procedure.
Therefore, in the context of traffic operations where highly accu-
rate forecasts are needed, one can obtain different forecasts of
the same quantity (the underlined assumption here is that differ-
ent predictors are measures of the same quantity and/or various
aspects of the same thing) by two or more different methods.
The set of available methods may consist of alternative models, dif-
ferent forecasters, or a mixture of models and forecasters.

Often, the approach used is to find the single ‘best’ predictor in
some sense (most accurate values, most appropriate models of the
underlying process, most cost-effective, etc.) among the available
forecasting methods. Another approach consists of combining
these individual forecasts. The idea of combining estimators in-
stead of selecting the single ‘best’ model has a long history and
has generated intensive theoretical works since the seminal article
of Granger [84]. In this work, it is showed that the linear combina-
tion of several predictors from a single data set can outperform the
individual predictors, methodological and practical issues related
to combining forecasts produced by different methods has been
investigated extensively in various contexts with notable suc-
cesses. In traffic forecasting under heterogeneous data sources con-
figuration, El Faouzi provided a methodical framework to combine
various forecasts of the same quantity [84,85]. He derived two pre-
dictors using nonparametric traffic flow using a kernel estimator
and predicting scheme based on the propagation of a lagged up-
stream traffic flow. The proposed combination strategies exhibit
very encouraging results. Data integration and data fusion were
applied for other purposes. In [86], the integration problem of
in-vehicle information and data provided by loop detectors was
studied. The core of the integration step was the extended Kalman
filtering. More recently, Sau et al. [87] investigated the traffic mon-
itoring problem within the multi-source data. The particle filter is
the estimation technique used in this context. Choi [88] examined
the problem of missing data estimation and proposed a framework
for missing data inference based on evidential reasoning.

4.8. Accurate position estimation

In modern transportation systems, information about the posi-
tion and the orientation of the vehicle should be accurate. Inertial
navigation systems (INS) are one of the earliest forms of navigation
techniques. INS, which functions on the principle of dead-reckon-
ing, has a potential problem of ‘‘integration drift” which is the
accumulation of small errors in the measurement of acceleration
and angular velocity into progressively larger errors in velocity,
which are compounded into still greater errors in position. In the
last few decades, GPS, which is initially developed as a military
navigation aid, has gained a wide acceptance in civilian navigation
systems. GPS is based on three major components: satellites orbit-
ing the Earth; control and monitoring stations on Earth; and the
GPS receivers owned by users. GPS satellites broadcast signals from
space that are picked up and identified by GPS receivers. Each GPS
receiver then provides three-dimensional location (latitude, longi-
tude, and altitude) plus the time [89]. When the satellite signals
are blocked by tall buildings or due to the other electromagnetic
interference, GPS outage occurs. In such situations, due to the lack
of reference signals, the estimation of position is impossible and
the device ceases to work. DF can effectively be used to combat
the drawbacks of both techniques. The benefits of using GPS with
an INS are that the INS may be calibrated by the GPS signals and
that the INS can provide position and angle updates at a quicker
rate than GPS. For high dynamic vehicles such as missiles and air-
craft, INS fills in the gaps between GPS positions. Additionally, GPS
may lose its signal and the INS can continue to compute the posi-
tion and angle during the period of lost GPS signal. The two sys-
tems are complementary and are often employed together.

One of the earliest approaches in GPS/INS integration is to use
Kalman filter. For instance, in [90], a decentralized filtering strat-
egy is developed for the GPS/INS integration. A Kalman smoother
is used to integrate the differential range and phase measurements
with the data from INS. Variants of Kalman filter are often em-
ployed to get a better integration. A constrained unscented Kalman
filter algorithm has been proposed in [91] to fuse differential GPS,
INS (gyro and accelerometer) and digital map to localize vehicles
for ITS applications. For Kalman filter to work, accurate stochastic
models of the sensors are required. Such requirements are often
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difficult to achieve and resulted in the application of artificial intel-
ligence technique for GPS-INS integration. Different types of neural
networks have been used to combine the GPS and INS information.
For example, multi layer perception and radial basis function neu-
ral networks are successfully used of the GPS/INS integration
[92,93]. GPS/INS integration is performed using adaptive neuro-
fuzzy techniques are used in [94]. Such systems mimic the vehicle
dynamics by training the AI modules during the availability of GPS
signals.
5. Conclusion and future directions

Needs for DF has emerged from transportation applications for
at least two decades and give rise to an emergent field which is
somewhat in its infancy. This survey paper, although focuses
exclusively in road traffic problems, has described the state of
the art and practice of fusion of traffic data from various sources.
For all the applications reported in this article, DF techniques seen
promising. However, these encouraging results should not conceal
the problem that still remains to be solved before any operational
widespread deployment of DF in transportation field. These chal-
lenges include the accuracy necessary for the effective application,
dynamic and real time aspects of the traffic and data quality, real
time dimension. The assessment of the benefits of DF will be more
readily performed with the increase number of successful practi-
cal applications of DF in transportation field. It is most definite,
however, that there are real opportunities for greater DF applica-
tion in road transportation systems. Prospects include the in-
creased collection of usable data from different sources other
than that to installed sensors for traffic surveillance. Wireless
technologies, which offer (i) the potential of easier reporting and
access to customized information (e.g. cooperative systems with
vehicle-to-vehicle, vehicle-to-infrastructure and infrastructure-
to-vehicle) and (ii) the new ability of tracking individual vehicles
and information collected by FCD/xFCD will enrich the available
information on traffic situation, will certainly accelerate needs
for DF operational systems.
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