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Abstract—Cloud computing allows business customers to scale up and down their resource usage based on needs. Many of the
touted gains in the cloud model come from resource multiplexing through virtualization technology. In this paper, we present a system
that uses virtualization technology to allocate data center resources dynamically based on application demands and support green
computing by optimizing the number of servers in use. We introduce the concept of “skewness” to measure the unevenness in the
multi-dimensional resource utilization of a server. By minimizing skewness, we can combine different types of workloads nicely and
improve the overall utilization of server resources. We develop a set of heuristics that prevent overload in the system effectively while
saving energy used. Trace driven simulation and experiment results demonstrate that our algorithm achieves good performance.
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1 INTRODUCTION

The elasticity and the lack of upfront capital investment
offered by cloud computing is appealing to many businesses.
There is a lot of discussion on the benefits and costs of the
cloud model and on how to move legacy applications onto the
cloud platform. Here we study a different problem: how can a
cloud service provider best multiplex its virtual resources onto
the physical hardware? This is important because much of the
touted gains in the cloud model come from such multiplexing.
Studies have found that servers in many existing data centers
are often severely under-utilized due to over-provisioning for
the peak demand [1] [2]. The cloud model is expected to
make such practice unnecessary by offering automatic scale up
and down in response to load variation. Besides reducing the
hardware cost, it also saves on electricity which contributes to
a significant portion of the operational expenses in large data
centers.

Virtual machine monitors (VMMs) like Xen provide a
mechanism for mapping virtual machines (VMs) to physical
resources [3]. This mapping is largely hidden from the cloud
users. Users with the Amazon EC2 service [4], for example,
do not know where their VM instances run. It is up to the
cloud provider to make sure the underlying physical machines
(PMs) have sufficient resources to meet their needs. VM live
migration technology makes it possible to change the mapping
between VMs and PMs while applications are running [5], [6].
However, a policy issue remains as how to decide the mapping
adaptively so that the resource demands of VMs are met while
the number of PMs used is minimized. This is challenging
when the resource needs of VMs are heterogeneous due to
the diverse set of applications they run and vary with time
as the workloads grow and shrink. The capacity of PMs can
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also be heterogenous because multiple generations of hardware
co-exist in a data center.

We aim to achieve two goals in our algorithm:
• overload avoidance: the capacity of a PM should be

sufficient to satisfy the resource needs of all VMs running
on it. Otherwise, the PM is overloaded and can lead to
degraded performance of its VMs.

• green computing: the number of PMs used should be
minimized as long as they can still satisfy the needs of
all VMs. Idle PMs can be turned off to save energy.

There is an inherent trade-off between the two goals in
the face of changing resource needs of VMs. For overload
avoidance, we should keep the utilization of PMs low to
reduce the possibility of overload in case the resource needs
of VMs increase later. For green computing, we should keep
the utilization of PMs reasonably high to make efficient use
of their energy.

In this paper, we present the design and implementation
of an automated resource management system that achieves a
good balance between the two goals. We make the following
contributions:

• We develop a resource allocation system that can avoid
overload in the system effectively while minimizing the
number of servers used.

• We introduce the concept of “skewness” to measure the
uneven utilization of a server. By minimizing skewness,
we can improve the overall utilization of servers in the
face of multi-dimensional resource constraints.

• We design a load prediction algorithm that can capture the
future resource usages of applications accurately without
looking inside the VMs. The algorithm can capture the
rising trend of resource usage patterns and help reduce
the placement churn significantly.

The rest of the paper is organized as follows. Section 2
provides an overview of our system and Section 3 describes
our algorithm to predict resource usage. The details of our
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Fig. 1. System Architecture

algorithm are presented in Section 4. Section 5 and 6 present
simulation and experiment results, respectively. Section 7
discusses related work. Section 8 concludes.

2 SYSTEM OVERVIEW

The architecture of the system is presented in Figure 1.
Each PM runs the Xen hypervisor (VMM) which supports
a privileged domain 0 and one or more domain U [3]. Each
VM in domain U encapsulates one or more applications such
as Web server, remote desktop, DNS, Mail, Map/Reduce, etc.
We assume all PMs share a backend storage.

The multiplexing of VMs to PMs is managed using the
Usher framework [7]. The main logic of our system is
implemented as a set of plug-ins to Usher. Each node runs an
Usher local node manager (LNM) on domain 0 which collects
the usage statistics of resources for each VM on that node.
The CPU and network usage can be calculated by monitoring
the scheduling events in Xen. The memory usage within a
VM, however, is not visible to the hypervisor. One approach
is to infer memory shortage of a VM by observing its swap
activities [8]. Unfortunately, the guest OS is required to install
a separate swap partition. Furthermore, it may be too late to
adjust the memory allocation by the time swapping occurs.
Instead we implemented a working set prober (WS Prober)
on each hypervisor to estimate the working set sizes of VMs
running on it. We use the random page sampling technique as
in the VMware ESX Server [9].

The statistics collected at each PM are forwarded to
the Usher central controller (Usher CTRL) where our VM
scheduler runs. The VM Scheduler is invoked periodically
and receives from the LNM the resource demand history
of VMs, the capacity and the load history of PMs, and the
current layout of VMs on PMs.

The scheduler has several components. The predictor
predicts the future resource demands of VMs and the future
load of PMs based on past statistics. We compute the load
of a PM by aggregating the resource usage of its VMs. The
details of the load prediction algorithm will be described in
the next section. The LNM at each node first attempts to
satisfy the new demands locally by adjusting the resource
allocation of VMs sharing the same VMM. Xen can change
the CPU allocation among the VMs by adjusting their weights

in its CPU scheduler. The MM Alloter on domain 0 of each
node is responsible for adjusting the local memory allocation.

The hot spot solver in our VM Scheduler detects if the
resource utilization of any PM is above the hot threshold (i.e.,
a hot spot). If so, some VMs running on them will be migrated
away to reduce their load. The cold spot solver checks if the
average utilization of actively used PMs (APMs) is below the
green computing threshold. If so, some of those PMs could
potentially be turned off to save energy. It identifies the set of
PMs whose utilization is below the cold threshold (i.e., cold
spots) and then attempts to migrate away all their VMs. It then
compiles a migration list of VMs and passes it to the Usher
CTRL for execution.

3 PREDICTING FUTURE RESOURCE NEEDS

We need to predict the future resource needs of VMs. As said
earlier, our focus is on Internet applications. One solution
is to look inside a VM for application level statistics, e.g.,
by parsing logs of pending requests. Doing so requires
modification of the VM which may not always be possible.
Instead, we make our prediction based on the past external
behaviors of VMs. Our first attempt was to calculate an
exponentially weighted moving average (EWMA) using a
TCP-like scheme:

E(t) = α ∗ E(t− 1) + (1− α) ∗O(t), 0 ≤ α ≤ 1

where E(t) and O(t) are the estimated and the observed load
at time t, respectively. α reflects a tradeoff between stability
and responsiveness.

We use the EWMA formula to predict the CPU load on
the DNS server in our university. We measure the load every
minute and predict the load in the next minute. Figure 2 (a)
shows the results for α = 0.7. Each dot in the figure is an
observed value and the curve represents the predicted values.
Visually, the curve cuts through the middle of the dots which
indicates a fairly accurate prediction. This is also verified by
the statistics in Table 1. The parameters in the parenthesis
are the α values. W is the length of the measurement
window (explained later). The “median” error is calculated as
a percentage of the observed value: |E(t)−O(t)|/O(t). The
“higher” and “lower” error percentages are the percentages of
predicted values that are higher or lower than the observed
values, respectively. As we can see, the prediction is fairly
accurate with roughly equal percentage of higher and lower
values.

TABLE 1
Load prediction algorithms
ewma(0.7) fusd(-0.2, 0.7) fusd(-0.2, 0.7)
W = 1 W = 1 W = 8

median error 5.6% 9.4% 3.3%
high error 56% 77% 58%
low error 44% 23% 41%

Although seemingly satisfactory, this formula does not
capture the rising trends of resource usage. For example,
when we see a sequence of O(t) = 10, 20, 30, and 40, it is
reasonable to predict the next value to be 50. Unfortunately,
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(a) EWMA: α = 0.7, W = 1 (b) FUSD: ↑ α = −0.2, ↓ α = 0.7, W = 1 (c) FUSD: ↑ α = −0.2, ↓ α = 0.7, W = 8
Fig. 2. CPU load prediction for the DNS server at our university. W is the measurement window.
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Fig. 3. Comparison of SPAR and FUSD

when α is between 0 and 1, the predicted value is always
between the historic value and the observed one. To reflect
the “acceleration”, we take an innovative approach by setting
α to a negative value. When −1 ≤ α < 0, the above formula
can be transformed into the following:

E(t) = −|α| ∗ E(t− 1) + (1 + |α|) ∗O(t)

= O(t) + |α| ∗ (O(t)− E(t− 1))

On the other hand, when the observed resource usage is
going down, we want to be conservative in reducing our
estimation. Hence, we use two parameters, ↑ α and ↓ α, to
control how quickly E(t) adapts to changes when O(t) is
increasing or decreasing, respectively. We call this the FUSD
(Fast Up and Slow Down) algorithm. Figure 2 (b) shows
the effectiveness of the FUSD algorithm for ↑ α = −0.2,
↓ α = 0.7. (These values are selected based on field experience
with traces collected for several Internet applications.) Now
the predicted values are higher than the observed ones most
of the time: 77% according to Table 1. The median error is
increased to 9.4% because we trade accuracy for safety. It is
still quite acceptable nevertheless.

So far we take O(t) as the last observed value. Most
applications have their SLOs specified in terms of a certain
percentiles of requests meeting a specific performance level.
More generally, we keep a window of W recently observed
values and take O(t) as a high percentile of them. Figure 2
(c) shows the result when W = 8 and we take the 90%th
percentile of the peak resource demand. The figure shows that
the prediction gets substantially better.

We have also investigated other prediction algorithms.
Linear Auto-Regression(AR) models, for example, are

broadly adopted in load prediction by other works [10]
[11] [12]. It models a predictive value as linear function of
its past observations. Model parameters are determined by
training with historical values. AR predictors are capable
of incorporating the seasonal pattern of load change. For
instance, the SPAR(4,2) [10] estimate the future logging rate
of MSN clients from six past observations, two of which are
the latest observations and the other four at the same time in
the last four weeks.

We compare SPAR(4,2) and FUSD(-0.2,0.7) in figure 3.
‘lpct’ refers to the percentage of low errors while ‘std’ refers
to standard deviation. Both algorithms are used to predict
the CPU utilization of the aforementioned DNS server in
a one-day duration. The predicting window is eight minute.
The standard deviation (std) of SPAR (4,2) is about 16%
smaller than that of FUSD (-0.2,0.7), which means SPAR
(4,2) achieves sightly better percision. This is because it
takes advantage of tiding pattern of the load. However,
SPAR(4,2) neither avoid low prediction nor smooth the load.
The requirement of a training phase to determine parameters
is inconvenient, especially when the load pattern changes.
Therefore we adopt the simpler EWMA variance. Thorough
investigation on prediction algorithms are left as future work.

As we will see later in the paper, the prediction algorithm
plays an important role in improving the stability and
performance of our resource allocation decisions.

4 THE SKEWNESS ALGORITHM

We introduce the concept of skewness to quantify the
unevenness in the utilization of multiple resources on a
server. Let n be the number of resources we consider and ri
be the utilization of the i-th resource. We define the resource
skewness of a server p as

skewness(p) =

√√√√ n∑
i=1

(
ri
r
− 1)2

where r is the average utilization of all resources for server
p. In practice, not all types of resources are performance
critical and hence we only need to consider bottleneck
resources in the above calculation. By minimizing the
skewness, we can combine different types of workloads
nicely and improve the overall utilization of server resources.
In the following, we describe the details of our algorithm.



Analysis of the algorithm is presented in Section 1 in the
complementary file.

4.1 Hot and cold spots

Our algorithm executes periodically to evaluate the resource
allocation status based on the predicted future resource
demands of VMs. We define a server as a hot spot if the
utilization of any of its resources is above a hot threshold.
This indicates that the server is overloaded and hence some
VMs running on it should be migrated away. We define the
temperature of a hot spot p as the square sum of its resource
utilization beyond the hot threshold:

temperature(p) =
∑
r∈R

(r − rt)
2

where R is the set of overloaded resources in server p and rt
is the hot threshold for resource r. (Note that only overloaded
resources are considered in the calculation.) The temperature
of a hot spot reflects its degree of overload. If a server is not
a hot spot, its temperature is zero.

We define a server as a cold spot if the utilizations of all
its resources are below a cold threshold. This indicates that
the server is mostly idle and a potential candidate to turn off
to save energy. However, we do so only when the average
resource utilization of all actively used servers (i.e., APMs)
in the system is below a green computing threshold. A server
is actively used if it has at least one VM running. Otherwise,
it is inactive. Finally, we define the warm threshold to be a
level of resource utilization that is sufficiently high to justify
having the server running but not so high as to risk becoming
a hot spot in the face of temporary fluctuation of application
resource demands.

Different types of resources can have different thresholds.
For example, we can define the hot thresholds for CPU and
memory resources to be 90% and 80%, respectively. Thus a
server is a hot spot if either its CPU usage is above 90% or
its memory usage is above 80%.

4.2 Hot spot mitigation

We sort the list of hot spots in the system in descending
temperature (i.e., we handle the hottest one first). Our goal
is to eliminate all hot spots if possible. Otherwise, keep their
temperature as low as possible. For each server p, we first
decide which of its VMs should be migrated away. We sort
its list of VMs based on the resulting temperature of the server
if that VM is migrated away. We aim to migrate away the VM
that can reduce the server’s temperature the most. In case of
ties, we select the VM whose removal can reduce the skewness
of the server the most. For each VM in the list, we see if we
can find a destination server to accommodate it. The server
must not become a hot spot after accepting this VM. Among
all such servers, we select one whose skewness can be reduced
the most by accepting this VM. Note that this reduction can
be negative which means we select the server whose skewness
increases the least. If a destination server is found, we record
the migration of the VM to that server and update the predicted

load of related servers. Otherwise, we move on to the next
VM in the list and try to find a destination server for it.
As long as we can find a destination server for any of its
VMs, we consider this run of the algorithm a success and
then move on to the next hot spot. Note that each run of the
algorithm migrates away at most one VM from the overloaded
server. This does not necessarily eliminate the hot spot, but at
least reduces its temperature. If it remains a hot spot in the
next decision run, the algorithm will repeat this process. It is
possible to design the algorithm so that it can migrate away
multiple VMs during each run. But this can add more load
on the related servers during a period when they are already
overloaded. We decide to use this more conservative approach
and leave the system some time to react before initiating
additional migrations.

4.3 Green computing

When the resource utilization of active servers is too low, some
of them can be turned off to save energy. This is handled in our
green computing algorithm. The challenge here is to reduce the
number of active servers during low load without sacrificing
performance either now or in the future. We need to avoid
oscillation in the system.

Our green computing algorithm is invoked when the average
utilizations of all resources on active servers are below the
green computing threshold. We sort the list of cold spots in
the system based on the ascending order of their memory size.
Since we need to migrate away all its VMs before we can shut
down an under-utilized server, we define the memory size of a
cold spot as the aggregate memory size of all VMs running on
it. Recall that our model assumes all VMs connect to a shared
back-end storage. Hence, the cost of a VM live migration is
determined mostly by its memory footprint. The Section 7 in
the complementary file explains why the memory is a good
measure in depth. We try to eliminate the cold spot with the
lowest cost first.

For a cold spot p, we check if we can migrate all its
VMs somewhere else. For each VM on p, we try to find a
destination server to accommodate it. The resource utilizations
of the server after accepting the VM must be below the
warm threshold. While we can save energy by consolidating
under-utilized servers, overdoing it may create hot spots in
the future. The warm threshold is designed to prevent that. If
multiple servers satisfy the above criterion, we prefer one that
is not a current cold spot. This is because increasing load on
a cold spot reduces the likelihood that it can be eliminated.
However, we will accept a cold spot as the destination server
if necessary. All things being equal, we select a destination
server whose skewness can be reduced the most by accepting
this VM. If we can find destination servers for all VMs on a
cold spot, we record the sequence of migrations and update the
predicted load of related servers. Otherwise, we do not migrate
any of its VMs. The list of cold spots is also updated because
some of them may no longer be cold due to the proposed VM
migrations in the above process.

The above consolidation adds extra load onto the related
servers. This is not as serious a problem as in the hot spot



mitigation case because green computing is initiated only
when the load in the system is low. Nevertheless, we want to
bound the extra load due to server consolidation. We restrict
the number of cold spots that can be eliminated in each run
of the algorithm to be no more than a certain percentage of
active servers in the system. This is called the consolidation
limit.

Note that we eliminate cold spots in the system only
when the average load of all active servers (APMs) is below
the green computing threshold. Otherwise, we leave those
cold spots there as potential destination machines for future
offloading. This is consistent with our philosophy that green
computing should be conducted conservatively.

4.4 Consolidated movements
The movements generated in each step above are not executed
until all steps have finished. The list of movements are then
consolidated so that each VM is moved at most once to
its final destination. For example, hot spot mitigation may
dictate a VM to move from PM A to PM B, while green
computing dictates it to move from PM B to PM C. In the
actual execution, the VM is moved from A to C directly.

5 SIMULATIONS
We evaluate the performance of our algorithm using trace
driven simulation. Note that our simulation uses the same
code base for the algorithm as the real implementation in the
experiments. This ensures the fidelity of our simulation results.
Traces are per-minute server resource utilization, such as CPU
rate, memory usage, and network traffic statistics, collected
using tools like “perfmon” (Windows), the “/proc” file system
(Linux), “pmstat/vmstat/netstat” commands (Solaris), etc.. The
raw traces are pre-processed into “Usher” format so that the
simulator can read them. We collected the traces from a variety
of sources:

• Web InfoMall: the largest online Web archive in China
(i.e., the counterpart of Internet Archive in the US) with
more than three billion archived Web pages.

• RealCourse: the largest online distance learning system
in China with servers distributed across 13 major cities.

• AmazingStore: the largest P2P storage system in China.
We also collected traces from servers and desktop

computers in our university including one of our mail servers,
the central DNS server, and desktops in our department.We
post-processed the traces based on days collected and use
random sampling and linear combination of the data sets to
generate the workloads needed. All simulation in this section
uses the real trace workload unless otherwise specified.

The default parameters we use in the simulation are shown
in Table 2. We used the FUSD load prediction algorithm
with ↑ α = −0.2, ↓ α = 0.7, and W = 8. In a dynamic
system, those parameters represent good knobs to tune the
performance of the system adaptively. We choose the default
parameter values based on empirical experience working with
many Internet applications. In the future, we plan to explore
using AI or control theoretic approach to find near optimal
values automatically.

TABLE 2
Parameters in our simulation

symbol meaning value
h hot threshold 0.9
c cold threshold 0.25
w warm threshold 0.65
g green computing threshold 0.4
l consolidation limit 0.05
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Fig. 4. Impact of thresholds on the number of APMs

5.1 Effect of thresholds on APMs

We first evaluate the effect of the various thresholds used
in our algorithm. We simulate a system with 100 PMs and
1000 VMs (selected randomly from the trace). We use random
VM to PM mapping in the initial layout. The scheduler is
invoked once per minute. The bottom part of Figure 4 show
the daily load variation in the system. The x-axis is the time
of the day starting at 8am. The y-axis is overloaded with
two meanings: the percentage of the load or the percentage
of APMs (i.e., Active PMs) in the system. Recall that a PM
is active (i.e., an APM) if it has at least one VM running.
As can be seen from the figure, the CPU load demonstrates
diurnal patterns which decreases substantially after midnight.
The memory consumption is fairly stable over the time. The
network utilization stays very low.

The top part of figure 4 shows how the percentage of
APMs vary with the load for different thresholds in our
algorithm. For example, ‘h0.7 g0.3 c0.1’ means that the hot,
the green computing, and the cold thresholds are 70%, 30%,
and 10%, respectively. Parameters not shown in the figure take
the default values in Table 2. Our algorithm can be made
more or less aggressive in its migration decision by tuning
the thresholds. The figure shows that lower hot thresholds
cause more aggressive migrations to mitigate hot spots in
the system and increases the number of APMs, and higher
cold and green computing thresholds cause more aggressive
consolidation which leads to a smaller number of APMs. With
the default thresholds in Table 2, the percentage of APMs in
our algorithm follows the load pattern closely.

To examine the performance of our algorithm in more
extreme situations, we also create a synthetic workload which
mimics the shape of a sine function (only the positive part)
and ranges from 15% to 95% with a 20% random fluctuation.



It has a much larger peak-to-mean ratio than the real trace.
The results are shown in Section 2 of the supplementary file.

5.2 Scalability of the algorithm
We evaluate the scalability of our algorithm by varying the
number of VMs in the simulation between 200 and 1400. The
ratio of VM to PM is 10:1. The results are shown in Figure
5. The left figure shows that the average decision time of our
algorithm increases with the system size. The speed of increase
is between linear and quadratic. We break down the decision
time into two parts: hot spot mitigation (marked as ‘hot’) and
green computing (marked as ‘cold’). We find that hot spot
mitigation contributes more to the decision time. We also find
that the decision time for the synthetic workload is higher than
that for the real trace due to the large variation in the synthetic
workload. With 140 PMs and 1400 VMs, the decision time is
about 1.3 seconds for the synthetic workload and 0.2 second
for the real trace.

The middle figure shows the average number of migrations
in the whole system during each decision. The number of
migrations is small and increases roughly linearly with the
system size. We find that hot spot contributes more to the
number of migrations. We also find that the number of
migrations in the synthetic workload is higher than that in the
real trace. With 140 PMs and 1400 VMs, on average each run
of our algorithm incurs about three migrations in the whole
system for the synthetic workload and only 1.3 migrations for
the real trace. This is also verified by the right figure which
computes the average number of migrations per VM in each
decision. The figure indicates that each VM experiences a tiny,
roughly constant number of migrations during a decision run,
independent of the system size. This number is about 0.0022
for the synthetic workload and 0.0009 for the real trace. This
translates into roughly one migration per 456 or 1174 decision
intervals, respectively. The stability of our algorithm is very
good.

We also conduct simulations by varying the VM to PM ratio.
With a higher VM to PM ratio, the load is distributed more
evenly among the PMs. The results are presented in Section
4 of the supplementary file.

5.3 Effect of load prediction
We compare the execution of our algorithm with and without
load prediction in Figure 6. When load prediction is disabled,
the algorithm simply uses the last observed load in its decision
making. Figure 6 (a) shows that load prediction significantly
reduces the average number of hot spots in the system during
a decision run. Notably, prediction prevents over 46% hot
spots in the simulation with 1400 VMs. This demonstrates its
high effectiveness in preventing server overload proactively.
Without prediction, the algorithm tries to consolidate a PM as
soon as its load drops below the threshold. With prediction,
the algorithm correctly foresees that the load of the PM
will increase above the threshold shortly and hence takes no
action. This leaves the PM in the “cold spot” state for a
while. However, it also reduces placement churns by avoiding
unnecessary migrations due to temporary load fluctuation.
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Consequently, the number of migrations in the system with
load prediction is smaller than that without prediction as
shown in Figure 6 (c). We can adjust the conservativeness
of load prediction by tuning its parameters, but the current
configuration largely serves our purpose (i.e., error on the side
of caution). The only downside of having more cold spots
in the system is that it may increase the number of APMs.
This is investigated in Figure 6 (b) which shows that the
average numbers of APMs remain essentially the same with or
without load prediction (the difference is less than 1%). This
is appealing because significant overload protection can be
achieved without sacrificing resources efficiency. Figure 6 (c)
compares the average number of migrations per VM in each
decision with and without load prediction. It shows that each
VM experiences 17% fewer migrations with load prediction.

6 EXPERIMENTS

Our experiments are conducted using a group of 30 Dell
PowerEdge blade servers with Intel E5620 CPU and 24GB
of RAM. The servers run Xen-3.3 and Linux 2.6.18. We
periodically read load statistics using the xenstat library
(same as what xentop does). The servers are connected over
a Gigabit ethernet to a group of four NFS storage servers
where our VM Scheduler runs. We use the same default
parameters as in the simulation.

6.1 Algorithm effectiveness
We evaluate the effectiveness of our algorithm in overload
mitigation and green computing. We start with a small scale
experiment consisting of three PMs and five VMs so that we
can present the results for all servers in figure 7. Different
shades are used for each VM. All VMs are configured with
128 MB of RAM. An Apache server runs on each VM.
We use httperf to invoke CPU intensive PHP scripts on the
Apache server. This allows us to subject the VMs to different
degrees of CPU load by adjusting the client request rates. The
utilization of other resources are kept low.

We first increase the CPU load of the three VMs on PM1

to create an overload. Our algorithm resolves the overload by
migrating VM3 to PM3. It reaches a stable state under high
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Fig. 5. Scalability of the algorithm with system size
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Fig. 6. Effect of load prediction

load around 420 seconds. Around 890 seconds, we decrease
the CPU load of all VMs gradually. Because the FUSD
prediction algorithm is conservative when the load decreases,
it takes a while before green computing takes effect. Around
1700 seconds, VM3 is migrated from PM3 to PM2 so that PM3

can be put into the standby mode. Around 2200 seconds, the
two VMs on PM1 are migrated to PM2 so that PM1 can be
released as well. As the load goes up and down, our algorithm
will repeat the above process: spread over or consolidate the
VMs as needed.

Next we extend the scale of the experiment to 30 servers.
We use the TPC-W benchmark for this experiment. TPC-W is
an industry standard benchmark for e-commerce applications
which simulates the browsing and buying behaviors of
customers [13]. We deploy 8 VMs on each server at the
beginning. Each VM is configured with one virtual CPU and
two gigabyte memory. Self-ballooning is enabled to allow
the hypervisor to reclaim unused memory. Each VM runs
the server side of the TPC-W benchmark corresponding to
various types of the workloads: browsing, shopping, hybrid
workloads, etc.. Our algorithm is invoked every 10 minutes.

Figure 8 shows how the number of APMs varies with
the average number of requests to each VM over time.
We keep the load on each VM low at the beginning. As
a result, green computing takes effect and consolidates the
VMs onto a smaller number of servers. 1 Note that each

1. There is a spike on the number of APMs at the very beginning because
it takes a while to deploy the 240 VMs onto 30 servers.

TPC-W server, even when idle, consumes several hundreds
megabytes of memory. After two hours, we increase the
load dramatically to emulate a “flash crowd” event. The
algorithm wakes up the stand-by servers to offload the hot spot
servers. The figure shows that the number of APMs increases
accordingly. After the request rates peak for about one hour,
we reduce the load gradually to emulate that the flash crowd
is over. This triggers green computing again to consolidate the
under-utilized servers. Figure 8 shows that over the course of
the experiment, the number of APM rises much faster than it
falls. This is due to the effect of our FUSD load prediction.
The figure also shows that the number of APMs remains at a
slightly elevated level after the flash crowd. This is because
the TPC-W servers maintain some data in cache and hence its
memory usage never goes back to its original level.

To quantify the energy saving, we measured the electric
power consumption under various TPC-W workloads with the
built-in watt-meter in our blade systems. We find that an idle
blade server consumes about 130 Watts and a fully utilized
server consumes about 205 Watts. In the above experiment, a
server on average spends 48% of the time in standby mode
due to green computing. This translates into roughly 62 Watts
power-saving per server or 1860 Watts for the group of 30
servers used in the experiment.

6.2 Impact of live migration
One concern about the use of VM live migration is its impact
on application performance. Previous studies have found this
impact to be small [5]. We investigate this impact in our own
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experiment. We extract the data on the 340 live migrations in
our 30 server experiment above. We find that 139 of them are
for hot spot mitigation. We focus on these migrations because
that is when the potential impact on application performance
is the most. Among the 139 migrations, we randomly pick
7 corresponding TPC-W sessions undergoing live migration.
All these sessions run the “shopping mix” workload with 200
emulated browsers. As a target for comparison, we re-run the
session with the same parameters but perform no migration
and use the resulting performance as the baseline. Figure 9
shows the normalized WIPS (Web Interactions Per Second)
for the 7 sessions. WIPS is the performance metric used by
TPC-W. The figure shows that most live migration sessions
exhibit no noticeable degradation in performance compared to
the baseline: the normalized WIPS is close to 1. The only
exception is session 3 whose degraded performance is caused
by an extremely busy server in the original experiment.

Next we take a closer look at one of the sessions in figure
9 and show how its performance vary over time in figure 10.
The dots in the figure show the WIPS every second. The two
curves show the moving average over a 30 second window
as computed by TPC-W. We marked in the figure when live
migration starts and finishes. With self-ballooning enabled,
the amount of memory transferred during the migration is
about 600MB. The figure verifies that live migration causes
no noticeable performance degradation. The duration of the
migration is under 10 seconds. Recall that our algorithm is
invoked every 10 minutes.
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Fig. 10. TPC-W performance with and without live
migration

6.3 Resource balance

Recall that the goal of the skewness algorithm is to mix
workloads with different resource requirements together so
that the overall utilization of server capacity is improved. In
this experiment we see how our algorithm handles a mix of
CPU, memory, and network intensive workloads. We vary the
CPU load as before. We inject the network load by sending
the VMs a series of network packets. The memory intensive
applications are created by allocating memory on demand.
Again we start with a small scale experiment consisting of
two PMs and four VMs so that we can present the results for
all servers in Figure 11. The two rows represent the two PMs.
The two columns represent the CPU and network dimensions,
respectively. The memory consumption is kept low for this
experiment.

Initially, the two VMs on PM1 are CPU intensive while
the two VMs on PM2 are network intensive. We increase
the load of their bottleneck resources gradually. Around 500
seconds, VM4 is migrated from PM2 to PM1 due to the
network overload in PM2. Then around 600 seconds, VM1

is migrated from PM1 to PM2 due to the CPU overload in
PM1. Now the system reaches a stable state with a balanced
resource utilization for both PMs – each with a CPU intensive
VM and a network intensive VM. Later we decrease the load
of all VMs gradually so that both PMs become cold spots. We
can see that the two VMs on PM1 are consolidated to PM2

by green computing.
Next we extend the scale of the experiment to a group of 72

VMs running over 8 PMs. Half of the VMs are CPU intensive,
while the other half are memory intensive. Initially, we keep
the load of all VMs low and deploy all CPU intensive VMs
on PM4 and PM5 while all memory intensive VMs on PM6

and PM7. Then we increase the load on all VMs gradually to
make the underlying PMs hot spots. Figure 12 shows how the
algorithm spreads the VMs to other PMs over time. As we can
see from the figure, the algorithm balances the two types of
VMs appropriately. The figure also shows that the load across
the set of PMs becomes well balanced as we increase the load.
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7 RELATED WORK

7.1 Resource allocation at the application level
Automatic scaling of Web applications was previously
studied in [14] [15] for data center environments. In MUSE
[14], each server has replicas of all web applications
running in the system. The dispatch algorithm in a frontend
L7-switch makes sure requests are reasonably served while
minimizing the number of under-utilized servers. Work
[15] uses network flow algorithms to allocate the load of
an application among its running instances. For connection
oriented Internet services like Windows Live Messenger, work
[10] presents an integrated approach for load dispatching
and server provisioning. All works above do not use virtual
machines and require the applications be structured in a
multi-tier architecture with load balancing provided through
an front-end dispatcher. In contrast, our work targets Amazon
EC2-style environment where it places no restriction on what
and how applications are constructed inside the VMs. A VM
is treated like a blackbox. Resource management is done only
at the granularity of whole VMs.

MapReduce [16] is another type of popular Cloud service
where data locality is the key to its performance. Qunicy
adopts min-cost flow model in task scheduling to maximize
data locality while keeping fairness among different jobs [17].
The “Delay Scheduling” algorithm trades execution time for
data locality [18]. Work [19] assign dynamic priorities to jobs
and users to facilitate resource allocation.

7.2 Resource allocation by live VM migration
VM live migration is a widely used technique for dynamic
resource allocation in a virtualized environment [8] [12]
[20]. Our work also belongs to this category. Sandpiper
combines multi-dimensional load information into a single
Volume metric [8]. It sorts the list of PMs based on their
volumes and the VMs in each PM in their volume-to-size ratio
(VSR). This unfortunately abstracts away critical information
needed when making the migration decision. It then considers
the PMs and the VMs in the pre-sorted order. We give a
concrete example in Section 1 of the supplementary file where
their algorithm selects the wrong VM to migrate away during
overload and fails to mitigate the hot spot. We also compare
our algorithm and theirs in real experiment. The results are
analyzed in Section 5 of the supplementary file to show how
they behave differently. In addition, their work has no support
for green computing and differs from ours in many other
aspects such as load prediction.

The HARMONY system applies virtualization technology
across multiple resource layers [20]. It uses VM and data
migration to mitigate hot spots not just on the servers, but
also on network devices and the storage nodes as well.
It introduces the Extended Vector Product(EVP) as an
indicator of imbalance in resource utilization. Their load
balancing algorithm is a variant of the Toyoda method [21] for
multi-dimensional knapsack problem. Unlike our system, their
system does not support green computing and load prediction
is left as future work. In Section 6 of the supplementary
file, we analyze the phenomenon that V ectorDot behaves
differently compared with our work and point out the reason
why our algorithm can utilize residual resources better.

Dynamic placement of virtual servers to minimize SLA
violations is studied in [12]. They model it as a bin packing
problem and use the well-known first-fit approximation
algorithm to calculate the VM to PM layout periodically. That
algorithm, however, is designed mostly for off-line use. It is
likely to incur a large number of migrations when applied
in on-line environment where the resource needs of VMs
change dynamically.

7.3 Green Computing
Many efforts have been made to curtail energy consumption
in data centers. Hardware based approaches include novel



thermal design for lower cooling power, or adopting
power-proportional and low-power hardware. Work [22] uses
Dynamic Voltage and Frequency Scaling(DVFS) to adjust
CPU power according to its load. We do not use DVFS
for green computing, as explained in the Section 7 in the
complementary file. PowerNap [23] resorts to new hardware
technologies such as Solid State Disk(SSD) and Self-Refresh
DRAM to implement rapid transition(less than 1ms) between
full operation and low power state, so that it can “take a
nap” in short idle intervals. When a server goes to sleep,
Somniloquy [24] notifies an embedded system residing on a
special designed NIC to delegate the main operating system.
It gives the illusion that the server is always active.

Our work belongs to the category of pure-software low-cost
solutions [10] [12] [14] [25] [26] [27]. Similar to Somniloquy
[24], SleepServer [26] initiates virtual machines on a dedicated
server as delegate, instead of depending on a special NIC.
LiteGreen [25] does not use a delegate. Instead it migrates the
desktop OS away so that the desktop can sleep. It requires
that the desktop is virtualized with shared storage. Jettison
[27] invents “partial VM migration”, a variance of live VM
migration, which only migrates away necessary working set
while leaving infrequently used data behind.

8 CONCLUSION

We have presented the design, implementation, and evaluation
of a resource management system for cloud computing
services. Our system multiplexes virtual to physical resources
adaptively based on the changing demand. We use the
skewness metric to combine VMs with different resource
characteristics appropriately so that the capacities of
servers are well utilized. Our algorithm achieves both
overload avoidance and green computing for systems with
multi-resource constraints.
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