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SUMMARY 
 
A method is presented for active control of reinforced concrete (R/C) structures against seismic 
excitations. An important aspect of the method presented is the extension of control process into the 
inelastic range of deformations. Computer software was developed for dynamic inelastic analysis of 
reinforced concrete structures, including the effects of control forces, illustrating the significance of active 
control analytically. This necessitated the formulation of stiffness matrix K as a function of time. 
Hysteretic behavior is modeled following the rules proposed by Takeda et al.[1]. The effects of 
instantaneous optimal control algorithms were investigated on structural response. Numerical examples 
were solved to illustrate the process of active structural control for R/C frame structures. The significance 
of the arrangement of control forces is presented. The results indicate that seismic response of an R/C 
structure can be reduced significantly with active control. There is an optimum combination of control 
forces and lateral displacements that can be established through dynamic analysis prior to application in 
practice.  
 

INTRODUCTION 
 
Behavior of structures during recent earthquakes has demonstrated that significant damage can be 
imposed on structures that are not designed on the basis of seismic design provisions of current building 
codes. Unfortunately, these structures constitute the majority of building and bridge stocks in the world. 
Therefore, seismic retrofitting has gained importance in recent years to reduce seismic vulnerability of 
existing structures. Among the options considered for seismic rehabilitation, a new approach has been 
emerging as a new technology for seismic risk mitigation. This technique involves active control of 
structural response during seismic excitations. 
  
Seismic structural control includes the computation of control forces during an actual seismic event and 
the application of these forces to reduce or minimize the effects of earthquakes. Two seismic response 
quantities gain importance in structural control; i) lateral drift and ii) earthquake forces. Both of these 
response quantities are affected significantly by inelasticity, which is unavoidable in reinforced concrete 
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structures under strong earthquakes. The main objective of the research work presented in this paper is to 
develop a new method of active structural control applicable to R/C frame structures responding in the 
inelastic mode of deformations. A rotational spring is created at that end of a member upon yielding. The 
M-θ relationship, which follows the rules proposed by Takeda [1], establishes the stiffness of the spring. 
Instantaneous Optimal Control algorithms, including closed-loop, open loop and closed-open-loop 
processes incorporate active structural control.  
 

EQUATION OF MOTION 
 
The equation of motion of an n degree-of-freedom system, subjected to ground excitations and control 
forces, can be written as shown below: 
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where, M, C and K are mass, damping and stiffness matrices, respectively; ag and fc are vectors which 
determine ground acceleration and control force; and a, v and u are response acceleration, velocity and 
displacement, respectively. Matrix E represents the degree of freedom in which the ground acceleration is 
applied, and matrix D shows the location of control forces. The ordinary solution of the differential 
equation given in Eq. (1) involves the introduction of a function to reduce the order of equation [2,3]. 
Accordingly, function Z can be introduced to reduce the order of equation and change the equation as 
shown below: 
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The solution of Eq. (2) leads to: 
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T is a matrix whose columns are eigenvector of matrix A. The stiffness matrix K in above equations 
remains constant for all steps of time and is not suitable for the investigation of inelastic response. 
Therefore, the above approach has been modified to permit the local stiffness matrix k to change upon 
yielding. This makes the resulting global stiffness matrix K to become time-dependent, and necessitates a 
different approach in which matrix n(t) is introduced as shown below:   
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The solution of Eq. (6) is similar to that presented earlier: 
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T1 is a matrix whose columns are eigenvector of matrix A1. The above method is applicable to the 
evaluation of both elastic and inelastic structural response. 
 
Local stiffness matrix 
When bending moment at the end of a flexural member reaches yield moment My, the behavior changes, 
and the member develops an inelastic region. Subsequently, a plastic hinge is created within this region 
whose properties can be represented by a rotational spring. The stiffness of the rotational spring is 
modeled analytically. For reversed cyclic loading, a hysteretic model is assigned to the spring, through 
which the stiffness values during various stages of loading, unloading and reloading are computed based 
on the rules of the model. 
  
Typically, a frame member is modeled by two springs, one at each end. This is shown in Figure 1, where 
ka and kb are spring stiffnesses at member ends.  
 
                                                                          
 
 
 
 

Figure 1 Element model with inelastic springs at member ends 
 
These rotational springs are assigned a very high value until yielding, and hence do not rotate. Upon 
yielding, the spring stiffness changes and follows the rules of the hysteretic model selected. 
 
If two parameters, Sa and Sb, are introduced as specified below; 
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then, the local stiffness matrix of a member can be expressed as shown below, which is a symmetric 
matrix. 
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EI and EA are flexural and axial rigidities, respectively, and L is member length. The above formulation 
was adopted from Holzer [4]. 
 
Spring stiffness 
Spring stiffness provides a relationship between bending moment and chord rotation. The chord rotation is 
the angle between the tangent at the end of a member and the line which joins the member end to the 
inflection point, as illustrated in Figure 2. The spring stiffness follows the rules of the hysteretic model 
when subjected to reversed cyclic loading.                                             
 
 
                  
 
 
 
 

 
Figure 2 Illustration of a member in double curvature and a chord angle 

 
The following ratio of incremental end moment, ∆M1 to incremental chord rotation, ∆θ1  is applicable 
prior to yielding. 
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L1 in the above equation represents the distance between member end and the inflection point (shear 
span). A ratio of the initial elastic stiffness may be assigned to the post-yield stiffness, consistent with the 
assumption of constant post-yield stiffness of a bi-linear primary moment-rotation relationship. This ratio 
is defined as “h”, leading to a post-yield stiffness of 3EIh/L1. This translates into the spring stiffness 
shown below. 
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Eq. 14 is employed for all time steps of analysis, including the elastic response, for which h = 1.0, 
resulting in infinite spring stiffness for ka.  
 
Control force 
Among the control algorithms utilized in Civil Engineering “Instantaneous Optimal Algorithm” is adopted 
here for the control force. In this algorithm, the performance index J1(t) is minimized. J1(t)is introduced as 
explained below. 
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Where Q and R are the weighting matrices and are defined below:                 
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For the optimization process, the Hamiltonian H is obtained as: 
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Where, λ is the Lagrange multiplier vector. Eq. 17 is a modified version of the expression used by Lin 
et.al [5] and Soon [6], where the modification was made to introduce inelasticity into the stiffness matrix. 
The following conditions are met to minimize the performance index J1(t): 
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Three methods can be employed for the solution of the algorithm, depending on the governing parameter 
for the control force. These methods are listed below: 
     1 - Open-Loop Control Method, where λ is only a function of ground excitation. 
     2 - Closed-Loop Control Method, where λ is only a function of feedback response. 
     3 - Open-Closed-Loop Control Method, where λ is a function of both ground excitation and feedback 
response. Analyses of structures presented in this paper are based on the Open-Loop Control Method. 
 

APPLICATION OF SEISMIC STRUCTURAL CONTROL 
 
The application of the above procedure is illustrated through two examples. The examples consist of a 
three-story and a five-story reinforced concrete building frames, each having different arrangements of 
control forces. 
 
Three-Story Reinforced Concrete Frame Structure 
A three-storey concrete building was designed using the provisions of the National Building Code of 
Canada [7]. A typical floor plan is illustrated in Figure 3(a). The frames in the short direction were 
modeled as shown in Figures 3(b), 3(c) and 3(d), with three different arrangements of control forces. The 
control forces were applied through actuators placed on floor slabs and prestressing strands attached to 
beam column joints, diagonally. The cables were capable of applying diagonal tension only, as tie 
members, without the capability of acting as compression struts. Pattern 1, shown in Figure 3(b), was 
intended to transform the interior bay to a bracing element along the height, similar to the effect of a shear 
wall. Pattern 2 was intended to control lateral deformations within the critical first storey to minimize 
damage to the first-storey columns. Pattern 3 shows an asymmetric control, where the entire frame is 
braced along one of the diagonals, while providing control for inter-storey drift in the opposite direction 
within individual bays.  
 
The optimization of control force is dependent on the ratio of c and r parameters used in Eq. 16 in 
defining the weighting matrices Q and R. The c/r ratio establishes a critical balance between the level of 
displacement to be controlled and the magnitude of force required for such control. While maximizing the 
reduction in lateral displacement is desirable, this may require excessive control forces that may not be 
realized with the hardware available, or that may potentially create local anchorage and/or construction 
problems.  
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(a) Typical floor plan                                                   (b) Pattern 1 

 
 

          

3 
@

 4
= 

12
 m

3 @ 6 = 18  m
            

3 
@

 4
= 

12
 m

3 @ 6 = 18  m
 

                            
(c) Pattern 2                                                        (d) Pattern 3 

 
Figure 3 Floor and elevation views of 3-storey reinforced concrete building 

 
The structure was analyzed in the short direction, under the N-S component of 1940 El Centro earthquake 
record, with and without active control. The frames were equipped with control hardware, as illustrated in 
Figure 3. Different c/r ratios were used to establish an optimum value. The results are plotted in Figures 4 
through 6. Figure 4 illustrates the effect of c/r ratio on the reduction of lateral displacements. It becomes 
clear from this figure that Pattern 1 provides the highest control, reducing the maximum horizontal roof 
displacement by approximately 70%. This is attained at a c/r ratio of 1x107 [log(c/r) = 7]. Figure 5 shows 
time histories for one of the control forces at the first storey level for two analyses with two different 
values of c/r ratio; i) log(c/r) = 7 and ii) log(c/r) = 10. Though the level of control force is significantly 
higher when log(c/r) = 10 was used, no further reduction is attained in roof displacements. Figure 6 
illustrates the time history of control achieved in roof displacements throughout the entire duration of the 
most intense segment of earthquake record.   
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Figure 4 The effect of c/r ratio on reduction in lateral displacements 
 

0

100

200

300

0 4 8 12Time(sec)

C
o

nt
ro

l F
o

rc
e 

at
 t

he
 F

ir
st

 F
lo

o
r 

(K
N

)

Pattern 1 Log(c/r)=7

Pattern 1 Log(c/r)=10

 
Figure 5 Variation of control force with c/r ratio 
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Figure 6 Roof displacement of the 3-storey frame as affected by active control 

 



An important aspect of seismic control in frames is the reduction in inter-storey drift to prevent damage to 
nonductile columns. Maximum inter-storey drift is plotted in Figure 7 for uncontrolled and controlled 
structures based on the optimum value of c/r = 1.0 x 107. The results show that Patterns 1 and 3 were able 
to provide reasonable levels of inter-storey drift control, whereas, Pattern 2, with control forces limited to 
the first floor, was not able to control the storey drift in upper stories. The control of inter-storey drift in 
the first and second stories, where high values of inter-storey drift is experienced, is illustrated in Figures 
8 and 9, respectively, during the entire duration of the earthquake record. 
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Figure 7 Inter-storey drift control in the 3-storey building 
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Figure 8 Control of inter-storey-drift at the first floor of 3-storey frame 
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Figure 9 Control of inter-storey drift at the second floor of 3-storey frame 

 



 
Five-Story Reinforced Concrete Frame Structure 
A five-storey concrete building was designed using the provisions of the National Building Code of 
Canada [7]. The floor plan was the same as the 3-storey building considered earlier, and shown in Figure 
3(a). Two different arrangements of control forces were applied as illustrated in Figure 10. Pattern 1 
provided lateral bracing in the middle bay, along the entire height of the frame. Pattern 2 provided bracing 
within the bottom three stories, extending over three bays, as shown in Figure 10(b). 
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                                          (a) Pattern 1                                                  (b) Pattern 2 
 

Figure 10 Patterns of control forces considered 
 

The structure was analyzed in the short direction under the N-S component of 1940 El Centro earthquake 
record, with and without active control. The frames were equipped with the control hardware illustrated in 
Figure 10. Different c/r ratios were used to establish an optimum value. Figures 11 and 12 indicate that the 
optimum value for c/r ratio was log(c/r) = 7, beyond which there was not much improvement in 
deformation reduction, though control forces kept increasing. Figure 13 shows storey drift control attained 
by the two force patterns considered. It is clear from this figure that Pattern 1 provided a better control of 
inter-storey drift and associated damage to the frame elements. Time histories for the roof displacement, as 
well as inter-storey drift control at first and second floors, are illustrated in Figures 14 through 16.  
 
An important aspect of the active control procedure presented in this paper is its applicability to reinforced 
concrete structures in the inelastic range of deformations. Inelastic deformations were introduced through 
a hysteretic model. The effect of active control on member end hysteretic relationship is illustrated in 
Figures 17 and 18. Figure 17 shows the moment-chord angle hysteretic relationship for a first-storey 
column of the 5-storey frame analyzed, with and without control. The column developed a displacement 
ductility ratio of 5.8 in the absence of control and showed a reduced ductility demand of 2.3 when seismic 
control was activated. Similarly, the second storey beam, which was one of the critical beams of the 5-
storey frame, developed a reduction in the beam ductility demand from 2.0 to 1.2 due to active control.  
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Figure 11 Reduction in roof displacement as affected by c/r ratio 
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Figure 12 Maximum control force as affected by c/r ratio 
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Figure 13 Inter-storey drift control in 5-storey building 
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Figure 14 Roof displacement as affected by active control 
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Figure 15 Control of inter-storey-drift at the first floor of 5-storey frame 
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Figure 16 Control of inter-storey-drift at the second floor of 5-storey frame 
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  a) Without control                                         b) With control 
 

Figure 17 Hysteretic behavior of a first-storey column 
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   a) Without control                                         b) With optimum control 
 

Figure 18 Hysteretic behavior of a 2nd storey beam 
 

CONCLUSIONS 
 
The following conclusions can be drawn from the analytical research presented in this paper: 

• The active control technique presented in the paper can be used effectively to reduce seismic 
displacement and ductility demands. The reinforced concrete frame structures analyzed in this 



investigation showed approximately 1/3 to 2/3 reductions in inter-storey drift due to active 
control. This was accompanied by similar reductions in ductility demands.   

• There is an optimum level of diagonal control force that produces the maximum reduction in 
horizontal displacements. Further increase or decrease in control forces may result in reduced 
effectiveness, accompanied by increased horizontal displacements.  

• Arrangement of control forces in a frame structure plays an important role on the effectiveness of 
control process. Diagonal tension forces applied within a bay, along the entire height of the 
building, appear to provide the most effective control pattern under seismic excitations.   
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