
A Tool for Enterprise Architecture Analysis

Pontus Johnson, Erik Johansson, Teodor Sommestad, Johan Ullberg
Department of Industrial Information and Control Systems

Royal Institute of Technology (KTH)
{pj101, erikj, teodors, johanu}@ics.kth.se

Abstract

The discipline of enterprise architecture advocates
the use of models to support decision-making on
enterprise-wide information system issues. In order
to provide such support, enterprise architecture
models should be amenable to analyses of various
properties, as e.g. the availability, performance,
interoperability, modifiability, and information
security of the modeled enterprise information
systems. This paper presents a software tool for such
analyses. The tool guides the user in the generation
of enterprise architecture models and subjects these
models to analyses resulting in quantitative measures
of the chosen quality attribute. The paper describes
and exemplifies both the architecture and the usage
of the tool.

1. Introduction

During the last decade, enterprise architecture has

grown into an established approach for holistic
management of information systems in an
organization. Enterprise architecture is model-based,
in the sense that diagrammatic descriptions of the
systems and their environment constitute the core of
the approach. A number of enterprise architecture
initiatives have been proposed, such as The Open
Group Architecture Framework (TOGAF) [27],
Enterprise Architecture Planning (EAP) [24], the
Zachman Framework [29], Intelligrid [7], Federal
Enterprise Architecture (FEA) [19] and the military
architectural frameworks such as DoDAF [1],
MODAF [16] and NAF [17]. What constitutes a
“good” enterprise architecture model has thus far not
been clearly defined. The reason is that the
“goodness” of a model is not an inherent property,
but contingent on the purpose the model is intended
to fill, i.e. what kind of analyses it will be subjected
to. For instance, if one seeks to employ an enterprise
architecture model for evaluating the performance of
an information system, the information required from
the model differs radically from the case when the
model is used to evaluate system interoperability.

Enterprise architecture analysis is the application
of property assessment criteria on enterprise
architecture models. For instance, one investigated
property might be the information security of a
system and a criterion for assessment of this property
might be “If the architectural model of the enterprise
features an intrusion detection system, then this
yields a higher level of information security than if
there is no such system.” Criteria and properties such
as these may be extracted from academic literature or
from empirical measurements.

This paper presents a software tool for the analysis
of enterprise architecture models. The tool guides the
creation of enterprise information system scenarios in
the form of enterprise architecture models and
generates quantitative assessments of the scenarios as
they evolve. Assessments can be of various quality
attributes, such as information security,
interoperability, maintainability, performance,
availability, usability, functional suitability, and
accuracy.

A number of enterprise architecture software tools
are available on the market, including Metis [28],
System Architect [26], Aris [23], and Qualiware [21].
Although some of these provide possibilities to sum
costs or propagate the strategic value of a set of
modeled objects, none have significant capabilities
for system quality analysis. Within the software
architecture community, various analysis methods
and tools do however exist, including the
Architecture Tradeoff Analysis Method (ATAM) [2],
Abd-Allah and Gacek [6], Wright [1] and the Chiron-
2 Software Architecture Description and Evolution
Language (C2SADEL) [15]. None of these are,
however, applicable in the enterprise architecture
domain.

The outline of this paper is as follows. Section 2
describes the method for enterprise architecture
analysis which the presented tool supports. This
section also introduces an example that is elaborated
throughout the paper. Section 3 briefly describes the
architecture of the tool. Sections 4 to 8 go through the
central components of the architecture in greater
detail. The paper is concluded with a discussion and
summary in Sections 9 and 10.

2. Method for enterprise architecture

analysis

The purpose of enterprise architecture models and

conducting analyses on these is to facilitate the
making of rational decisions about information
systems. The process of enterprise architecture
analysis is illustrated in Figure 1 below. In the first
step, assessment scoping, the problem is described in
terms of a set of potential future scenarios of the
enterprise information system and in terms of the
assessment criteria (in the figure, abstract model)
with which the scenarios will be evaluated. In the
second step, the scenarios are detailed by a process of
evidence collection, resulting in a set of models
(concrete models, in the figure) of the different
scenarios. In the final step, analysis, quantitative
values of the models’ quality attributes are
calculated, and the models are then visualized in the
form of enterprise architecture diagrams.

More concretely, assume that the decision maker
is contemplating a change related to the customer
support services in the company. The Customer
Relation Management (CRM) system might be
replaced by a new one, and this might also affect the
system support organization. The question for the
decision maker is whether the change is to the better
or not.

As mentioned, in the assessment scoping step, the
decision maker identifies the available decision
alternatives, i.e. the enterprise information system

scenarios. In this case, we find two alternatives: 1)
keep the current CRM system, 2) implement a new
CRM system. Also in this step, the decision maker
needs to decide on how to determine which the better
scenario is, i.e. the assessment criteria, or the goal of
the assessment. Oftentimes, many quality attributes
are desirable, high availability, high information
security, high, functional suitability, high
interoperability, etc. In this paper, without loss of
generality, we simplify the problem to the assessment
of availability of the customer support functionality.

During the next step, to identify the better
alternative, the scenarios need to be detailed to
facilitate an analysis of them. Much information
about the involved systems and their organizational
context may be required for a good understanding of
their future availability. For instance, it is reasonable
to believe that an experienced system administrator
generally needs shorter time to repair a system than
an inexperienced one. The experience level of the
system administrators is thus one factor that can
affect the availability and should therefore be
recorded in the scenario model. The decision maker
thus needs to understand what information to gather,
and also ensure that this information is indeed
collected and modeled.

When the decision alternatives are detailed, they
can be analyzed with respect to the desirable property
or properties. The pros and cons of the scenarios then
need to be traded against each other in order
determine which alternative is to be preferred.

Figure 1. Illustration of the overall process of enterprise architecture analysis.

3. Design of the tool

Here we outline a software tool supporting the

enterprise architecture analysis process described in
the previous section. The structural design of the tool
is based upon three processes, see Figure 1. Relating
to the previous section, the first process step concerns
the identification of the decision alternatives and the
goals (assessment criteria). An example of a goal is to
maximize the availability of the customer support
functionality. Goals are codified in an Abstract
Model, which also represents how various entities
and attributes affect the goals. For instance, the
abstract model might state that the experience of the
system administrator will affect the availability of the
system. Section 4 details the syntax and semantics of
abstract models. The Scenarios are not detailed in
this step, but only given a name.

In the second process step, the scenarios are
elaborated. An example of a scenario might be to
choose vendor X for the CRM system. In order to
assess whether this is a better scenario than the one
based on vendor Y, more information is required. For
instance, we might need to know if the system
administrator has experience of vendor X’s system,
since this factor will affect the goodness of the
scenario. Collected information on matters like these
is called Evidence, and the process of evidence
collection is supported by the tool. Section 5
elaborates further on this topic.

From the evidence, the Model Builder
Function creates a Concrete Model, which is a
comprehensive enterprise architecture scenario
model. The concrete model thus typically contains
instantiations of entities such as information
system, business process, function,
data, etc. Many times, the collected evidence will
not be sufficient to allow full certainty of the values
of entity attributes (for instance the attribute
experience of the entity system
administrator). They are therefore defined as
random variables, allowing the representation of
uncertainty. In Section 6, the concrete model and the
representation of evidence is further described.

Recall that an important purpose of enterprise
architecture models is to answer relevant questions,
such as whether the availability of a certain function
is higher in scenario A than in scenario B.
Oftentimes, it is not possible to directly collect
information about properties such as availability, but
it is possible to collect evidence pointing in a certain
direction (e.g. whether the system administrator is
experienced or not). Using Bayesian theory, the
Calculation Function calculates the values of

those attributes that could not be credibly determined
directly. The tool employs the collected evidence as
well as the causal relationships specified in the
abstract model as input to these calculations. In
Section 7, this issue is further considered.

Central artifacts in enterprise architecture
frameworks and tools are graphical models. The
concrete models containing the enterprise architecture
scenarios therefore need to be converted into a visual
format suitable for human consumption. This is
performed by the Visualization Function,
which is further detailed in Section 8.

4. Abstract model

As stated earlier, the purpose of enterprise

architecture analysis is to facilitate rational IT
decision making by predicting the effects of decisions
on desirable system qualities, such as information
security or modifiability. Generally, the causal
relationships from the decisions to the qualities are
complicated and in order to understand these chains
the quality attributes need to be connected to causally
significant intermediate concepts that are easier to
relate to the decisions [11]. As an example, the
experience of the system administrator may affect the
availability of the system he or she administrates. The
system’s availability can in turn affect the availability
of the provided functions, which is the quality
attribute of interest. This understanding combined
with knowledge about the experience of the system
administrator allows predictions about the availability
of the function, even though this attribute has not
been measured.

It would be convenient to design enterprise
architecture models so they contain the information
required to perform these causal predictions. This
section therefore introduces the concept of an
abstract model which is an enterprise architecture
metamodel augmented with the causal links described
above.

The remainder of this section presents the different
elements of abstract models. From the tool’s point of
view the abstract model is specified using XML, but
it is also possible to depict it graphically which will
be the case in this paper.

An abstract model is composed of four
components: entities, attributes, entity relationships
and attribute relationships. Of these, the three first
entities are recognized from the class diagram
notation of the Unified Modeling Language (UML)
[16]. Entities are central in all enterprise architecture
modeling and describe items of interest to the model.
Sometimes these items are physical artifacts of the

real world, such as “person” or “computer”, and
sometimes they are more abstract like “process”,
“function” or “data”. In the abstract model, the
entities are depicted essentially the same way as
classes in UML, a box with the name of the entity at
the top of the box and a line separating the name area
from the rest of the box.

The entities can be connected to each other with
entity relationships. These relationships are
represented as lines between the entities and, in both
ends of the relationship, role names (e.g. “uses” and
“used by”) are used in accordance with the UML.
The multiplicity is indicated on the entity
relationship.

Attributes are contained by entities, but in contrast
to the UML, they are random variables (thus paving
the way for probabilistic inference). The attributes
may assume values from a finite domain such as
{True, False}, {High, Medium, Low}, {1-10, 11-
100, 101-1000}, etc. They can represent concepts
such as “Age”, “Experience”, “Usability”, or
“Interoperability”. For instance
P(Experience=High) represents the probability
that the attribute Experience will assume the value
High. Attributes are portrayed as rectangles within
the entities. The range of possible values of an
attribute is defined in the abstract model, but this is
not illustrated in the graphical notation shown in
Figure 2.

The last component of the abstract model is the
attribute relationship. Graphically, they are illustrated
as gray arrows between the rectangles denoting
attributes and the relationship indicates a probabilistic
dependence between two attributes. If this attribute
relationship spans two entities, it is always associated
with a particular entity relationship, which is denoted
by the line connecting the attribute relationship with
the entity relationship. As an example, the attribute
Experience of the entity System Administrator
will affect the attribute Availability of the entity
System only if the entity System Administrator
Administers this particular System, see Figure 2.

When there is a relationship between two
attributes, a change in the state of the source (i.e. the
parent) attribute is expected to lead to a change in the
target (child) attribute. The probability of a target
attribute assuming a certain state thus depends on the

values of its parent nodes. This probabilistic
dependence is specified fully by a conditional
probability distribution, P(X=x | Y=y, Z=z), stating
the probability that a target attribute X will assume a
certain value x, given that its parents Y and Z have
assumed some values y and z.

These conditional probabilities are used when
performing the assessment of quality attributes (see
Section 7 for more information) and are expressed in
conditional probability tables, where each possible
configuration of the parent attributes’ states is related
to a probability distribution over the child attributes
domain.

There are basically three sources of information
when creating abstract models. Firstly, it is possible
to interpret scientific literature on the chosen topic
(e.g. books and articles on the assessment of the
quality attribute availability). Secondly, it is possible
to elicit such knowledge from experts [1]. Thirdly,
empirical data may be employed to parameterize an
abstract model. Methods have also been developed to
base conditional probabilities on combinations of
sources [5].

 However, the size of a conditional probability
table grows exponentially with the number of
influencing attributes. For large models, it is
therefore a significant task to determine these tables
by specifying each cell individually. One approach to
counter this problem is to express generalized
conditional probability tables by parameterized
functions such as noisy-max, noisy-min [1] [25]. The
number of parameters in these models typically
grows linearly instead of exponentially with the
number of parents. Furthermore, as will be
exemplified in Section 6, these parameterized
functions are required for the efficient use of
multiplicity.

As stated earlier, this paper will present an
example where the goal is to assess the availability of
the customer support function provided by a
customer relation management system in an
enterprise. The example is, of course, simplified for
pedagogical reasons and would be extended
significantly if an actual assessment were to be
performed.

Figure 2. Illustration of the abstract model for the example presented in this paper.

The abstract model used in this example codifies a

theory of the availability of functions. The theory
starts by the claims that the availability of a function
is dependent on the availability of the system that
provides the function, see Figure 2. The system’s
availability, in turn, depends on its reliability, i.e.
how often the system fails. The system availability is
also dependent on the time needed for the person
administrating the system to identify and prepare for
correcting the failures (his or her responsiveness).
Furthermore, when the administrator has arrived to
repair the system, his or her experience will affect the
repair time. Hence experience of the system
administrator is of relevance. Finally, if the system
administrator is supported by any functions in their
administrative work, such as fault management
functionality, the availability of these will have an
impact on the responsiveness of this administrator.

The model’s conditional probability tables are
expressed by parameterized functions. A min-
function describes how the systems availability is
influenced by its parents. This function implies that
the availability of a system is equal to the minimum
of its administrator’s qualities and its own reliability.
The availability of a function is modeled as identical
to the availability of the system providing this
function. Finally, the dependence of the
responsiveness of the system administrator on the
availability of functional support is modeled as a
max-function.

5. Evidence collection

Given the abstract model, detailed information

needs to be gathered about the scenarios so that the
assessment can be performed. This is the evidence
collection process. The process of information
gathering is guided by the tool so that only evidence
relevant to the assessment is collected. The evidence

is used to create one concrete model per scenario, cf.
Section 6, where the generic concepts of the abstract
model are instantiated as enterprise-specific
(concrete) entities and attributes.

Recall that before evidence collection starts,
assessment scoping includes defining the goal of the
assessment and identifying the scenarios to choose
between. In our example the scenarios are 1) to keep
the existing CRM system or 2) to purchase and install
a new one. The goal in the example is limited to
maximizing the availability of a function.

When the scope of the assessment has been
determined, evidence is collected. This is typically
done by reading documents, performing interviews or
from first-hand experience. Three types of evidence
can be supplied, evidence on the existence of various
entities, evidence on the relationships between
entities, and evidence on the value of the attributes.
The first two types determine the structure of the
concrete model and the last type fills the structure
with indications of attribute states so that the quality
assessment can be performed. Only evidence on
entities, relationships and attributes present in the
abstract model is permissible evidence.

During evidence collection, contextual
information about the evidence is also gathered, for
instance how old it is and from what source it was
elicited. This information enables an estimate of the
evidence’s credibility. [10] The evidential credibility
is subsequently used to estimate the credibility of the
assessment as a whole.

Returning to the example, the scoping declares
that there is a Function called Customer Support.
Based on this, the tool guides the user to supply the
evidence needed to perform the assessment. The
abstract model states that all functions are provided
by systems; in this example the customer support
function is provided by a CRM system. Systems do,
according to the multiplicity constraints in the
abstract model, have exactly one system

administrator. Hence, evidence should be provided on
who the system administrator of the system is in the
two scenarios. Furthermore, system administrators
could use functions in their administrative work. If
they do so, evidence is collected on these functions
and in accordance with the abstract model, evidence
is collected on entities related to these functions,
identifying the systems providing these functions and
so on.

Examples of evidence regarding a system
administrator are shown in Figure 3. The first part of
the file is a piece of evidence on entities specifying
that John Smith claims that there is a system
administrator called Juliet, i.e. that there exists an
instantiation of the entity System Administrator
of the abstract model with the name Juliet.

Figure 3. XML-segment of evidence.

In the second part, a piece of evidence on the
value of attributes is given where Juliet herself claims

that her experience is high. Her answer is supplied
together with contextual information about when and
by which means the evidence was collected. This
information will be used to calculate the credibility of
her statement. In the same way other evidence
relevant to the assessment is collected and specified.

6. Concrete model

At this point, we have discussed the abstract

model and the collected evidence. Together, these
two can be combined into a concrete model. A
concrete model is an instantiation of an abstract
model much in the same way that an object model is
an instantiation of a class model in object-oriented
modeling. Whereas the abstract model speaks of
general entities, attributes and relationships, the
concrete model speaks of these in the context of a
specific enterprise or information system. In our
example, the abstract model describes the general
influence of a system administrator’s experience on
the availability of the administered system. The
concrete model, however, specifies which system and
what administrator are under consideration in this
particular instance. The actual instantiation process is
straightforward. If there is a piece of evidence that an
entity or relationship exists or that a certain attribute
has a certain value, then this is introduced into the
concrete model. Considering the example in this
paper, Figure 4 is the result of the combination of the
abstract model in Figure 2 and a set of evidence
partially described in Section 5 above.

According to the multiplicity in the abstract
model, a function is always provided by exactly one
system.

Figure 4. Illustration of a concrete model for one of the scenarios discussed in this paper.

The customer support function is in this case
provided by the CRM system. The availability of the
customer support function is, as expressed in the
abstract model, dependent on the availability of the
system it is provided by, producing the arrow
between the two attributes. The abstract model
further stipulates that every system has exactly one
system administrator; in the case of the CRM system,
that administrator is Juliet and her responsiveness and
experience has an impact on the CRM system’s
availability.

Juliet uses a fault management function to detect
failures in the systems she administers. Since she will
not receive failure notifications when the fault
management function is unavailable, her
responsiveness depends on the availability of that
function. The fault management function is in turn
provided by a maintenance system which is
administrated by another system administrator,

Joseph. A system administrator could use any number
of functions as support in the administrative work.
Unlike Juliet however, Joseph does not use any
administration-supporting functionality. His
responsiveness and experience do, however, still
impact the availability of the fault management
system that he administrates.

Given the relationships between entities, the
abstract model provides information on how
attributes influence each other. This influence is
expressed in a conditional probability table where
states of influencing attributes determine the
probability distribution over the states in the target
attribute. In this case, the abstract model details that
the availability is a min-function of its influencing
attributes (cf. Section 4). The conditional probability
table corresponding to this function is described in
Table 1.

Table 1. Conditional probability table for the availability of the entity CRM system.

CRM_System.Reliability High Medium Low
Juliet.Responsiveness High Medium Low High Medium Low High Medium Low

Juliet.Experience H M L H M L H M L H M L H M L H M L H M L H M L H M L
H 1 0
M 0 1 0 1 1 0 0 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 CRM_System.Availability
L 0 0 1 0 0 1 1 1 1 0 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1

In the example elaborated here, evidence has been

collected on the state of certain attributes, but not all.
As shown by ellipses in Figure 4, there is evidence on
the two administrators’ attributes and the two

system’s reliability. Furthermore, there is evidence on
the availability of the fault management function.

The experience of the system administrator is one
of three attributes which according to the model

influences the CRM system’s availability. As
indicated in Figure 3, Juliet was asked about her
experience during an interview in the evidence
collection process, and she replied that her experience
is high.

There is, however, an inherent uncertainty
regarding whether Juliet’s answer corresponds to her
actual experience. This uncertainty may be estimated
in the light of the contextual information gathered
about the source and age of the evidence. The
relationship between Juliet’s response and her actual
experience is expressed in Table 2.

Table 2. Conditional Probability table for
evidence on Juliet’s experience.

Juliet.Experience High Medium Low
High 0.8 0.1 0.1
Medium 0.1 0.8 0.1 Evidence.Interview.Juliet
Low 0.1 0.1 0.8

To each piece of evidence supplied about the state

of attributes, a conditional probability table like the
one in Table 2 is created.

Based on the design of the abstract model, the
concrete model now holds all the information
necessary to assess the availability of the customer
support function. It contains the entities, relationships
and attributes which directly or indirectly have
relevance to the assessment, together with evidence
on the states of the attributes. In a decision situation,
it would be reasonable to create one or a few similar
scenarios to allow comparison.

7. Calculation

In the previous section, the combination of

abstract model and collected evidence resulted in a

concrete model consisting of entities, relationships
and entity attributes with assigned values. There
were, however, still attributes with unassigned
values. For instance, in the running example, the
availability of the CRM system is still unknown.

The attribute relationships from the abstract model
allow us to calculate these values. Recall that an
attribute relationship represents a probabilistic
dependence of the target attribute on the value of the
source attribute and that these dependencies may be
represented in conditional probability tables. In
Table 1, we presented the conditional probability
table of the CRM system attribute Availability,
dependent on the system’s Reliability and the
administrator’s Experience and Responsiveness.
If the probability distributions of the source attributes
are known, it is possible to infer a value for the target
attribute using the law of total probability,

() () ()∑=

i
ii BPBAPAP .

If, for instance, we know the values of the

system’s reliability, RL=rlj, and the administrator’s
responsiveness, RS=rsl, then we can calculate the
probability that the availability assumes a certain
value, AV=avi, using the following formula,

()

()
{ }

() () ()lkj

LMHk
lkji

lji

rsRSPexEXPrlRLP

rs,RSexEX,rlRLavAVP

rsRS,rlRLavAVP

===

⋅====

====

∑
∈ ,,

where P(AV=avi|RL=rlj,EX=exk,RS=rsl) is given by
Table 1.

Figure 5 Attribute values in the concrete model are inferred from the collected evidence using the
probabilistic dependencies between attributes (grey arrows). The values are presented diagrammatically as

probability distributions over the values High (H), Medium (M) and Low (L).

Using Bayes’ rule,

() () ()
()BP

APABP
BAP = ,

the probability distributions of the nodes RL, EX and
RS may be calculated from evidence collected on
their state. Table 2 in Section 6 represents our
confidence in Juliet’s statement, JEX, regarding her
own experience, P(JEX=jexi|EX=exj). Given that
Juliet provides an answer, JEX=jex, our belief of
Juliet’s experience becomes

()
() ()

()jexJEXP
exEXPexEXjexJEXP

jexJEXexEXP

jj

j

=
===

===

where P(JEX=jex) is a normalization term. Bayes’
rule also allows the pooling of multiple pieces of
evidence, so that, e.g., also Joseph’s opinion on
Juliet’s experience can influence our beliefs.

It is possible to obtain probability distributions for
attributes also when only one or a few surrounding
nodes are known, although the resulting beliefs
normally are associated with a lower certainty.
Figure 5 presents the concrete model of the running
example, with a set of evidence of the same
credibility as Juliet’s statement (Table 2). The
relationship between system availability and function
availability are described in Table 3 below and the

relationship between the fault management function’s
availability and Juliet’s responsiveness is shown in
table 4.

Table 3. Conditional probability table for the
CRM system’s availability.

CRM_System.Availability High Medium Low
High 1 0 0
Medium 0 1 0 Customer_Support.Availability
Low 0 0 1

Table 4. Conditional probability table for Juliet’s
responsiveness.

Fault_Management.Availability High Medium Low
High 1 0 0
Medium 0 1 0 Juliet.Responsiveness
Low 0 0 1

 As can be seen from the figure, in this example a

limited set of evidence is sufficient to produce
interesting results. In particular, these results can be
used to support decisions between alternative future
scenarios. If a higher confidence is desired in order to
comfortably make a decision, it is necessary to
engage in further evidence collection.

8. Visualization

 When the evidence has been collected and the

calculation has been performed, the results need to be
visualized to the decision maker. The results are
comprised of the concrete model with inferred values,
and are thus conveniently presented in the form of a
traditional enterprise architecture model.

Figure 6 presents two scenario models. The first
model is from the running example, while the second
one is an alternative where the system administrator
Juliet is additionally supported by an intrusion
detection system. The functions are depicted as

boxes, the systems as mainframes and the system
administrators are represented as persons.

By clicking on the entities, a dialog box presents
the attributes and their values. In the figure such a
property window is shown for the function
Customer Support where the inferred availability
of the function is displayed. The credibility of the
assessment is presented in the form of an I-bar.

Figure 6. Illustration of visualized results for the scenarios discussed in this paper.

By considering the two scenarios and their
calculated qualities, a decision maker is in a good
position to make a rational decision with respect to
the evolution of the enterprise information system.

9. Discussion

At the time of writing, we have developed a

prototype for the core functions, reading evidence
and abstract model and from these creating a concrete
model with the values of the attributes calculated.

Apart from validating the current prototype further
there are two major research questions that will be
focused upon within the nearest future, first there is
the issue of the exponential growth of the conditional
probability matrices, some approaches to tackle this
have already been mentioned and others that are
being discussed are the introduction of intermediary
attributes [18] or removing arcs where the influence
is weak [13]. The second question is how to best
select which evidence to collect, a topic that becomes
even more important as the models grows larger [9].

10. Summary

In this paper, we have presented a tool for analysis

of enterprise architecture scenarios. The tool guides
the development of enterprise architecture models
and from these derives a measure of the quality of the
modeled architecture. In the paper, the exemplified
quality measure is the availability of a certain
information system function, but the tool supports the
analysis of various quality attributes, such as
information security, interoperability, maintainability,
performance, and more.

Information system decision making is supported
by allowing quantitative comparisons of the qualities
of possible future scenarios of the enterprise
information system and its context. The tool also
provides an estimate of the credibility of the
quantitative assessment.

11. Acknowledgements

The authors would like to thank the sponsor of this

research, Elforsk AB (owned jointly by Swedenergy
and The Swedish National Grid).

12. References

[1] Allen, R., R. Douence, D. Garlan, “Specifying

and Analyzing Dynamic Software Architectures”
Proceedings of the 1998 Conference on
Fundamental Approaches to Software
Engineering, 1998

[2] Clements, P., R. Kazman, M. Klein, “Evaluating
Software Architectures: Methods and Case
Studies”, Addison-Wesley, 2001

[3] DoD Architecture Framework Working Group,
“DoD Architecture Framework” Version 1.0,
2003

[4] Druzdzel MJ and L.C. van der Gaag, ”Building
probabilistic networks: where do the numbers
come from?” IEEE Trans Knowledge Data Eng
2000;12:481–6.

[5] Druzdzel, M.J. and L.C. van der Gaag,
“Elicitation of Probabilities for Belief Networks:
Combining Qualitative and Quantitative
Information,” Proc. 11th Conf. Uncertainty in
Artificial Intelligence, pp. 141-148, 1995

[6] Gacek, C., “Detecting Architectural Mismatch
During System Composition”, PhD. Thesis,
University of Southern California, 1998

[7] Hughes, J., The Integrated Energy and
Communication Systems Architecture, Electric
Power Research Institute, 2004

[8] Jensen, F., “Bayesian Networks and Decision
Graphs”, Springer-Verlag, 2001

[9] Johansson, E., M. Ekstedt, P. Johnson,
”Assessment of Enterprise Information Security –
The Importance of Information Search Cost”,
Proceedings of the 39yh IEEE Hawaii
International Conference on System Sciences,
Hawaii, 2006

[10] Johansson, E. and P. Johnson, “Assessment of
Enterprise Information Security – Estimating the
Credibility of the Results”, Proceedings of the 9th
IEEE international Annual Enterprise
Distributed Object Computing Conference, The
Netherlands, 2005.

[11] Johnson, P. and M. Ekstedt, Enterprise
Architecture – Models and Analyses for
Information Systems Decision Making,
Studentlitteratur, Sweden, 2007

[12] Johnson, P. et. al. “Enterprise Architecture
Analysis with Extended Influence Diagrams”,
Information Systems Frontiers, Volume 9, issue
2-3, 2007

[13] Kjaerulff, U., “Reduction of Computational
Complexity in Bayesian Networks through
Removal of Weak Dependences,” Proceedings of
the 10th Conference on Uncertainty in Artificial
Intelligence, pp. 374-382, 1994

[14] Lagerström, R., P. Johnson, P. Närman,
”Extended Influence Diagram Generation”,
Proceedings of the third International
Conference on Interoperability for Enterprise
Software and Applications, Springer-Verlag
Portugal, 2007

[15] Medvidovic, N., D. Rosenblum, R. Taylor, ”A
Language and Environment for Architecture-
Based Software Development and Evolution”,
Proceedings of the 21st International Conference
on Software Engineering, 1999

[16] MoDAF, “Ministry of Defense Architecture
Framework”, Version 1.0, 2005

[17] NAF, “NATO C3 Technical Architecture”,
Volume 1-5, Version 7.0, Allied Data Publication
34, 2005

[18] Olesen, K.G. et. al. “A MUNIN Network for the
Median NerveÐA Case Study on Loops”, Applied
Artificial Intelligence, vol. 3, pp. 385-404, 1989

[19] OMB – U.S. Office of Management and Budget,
“FEA Consolidated Reference Model Document”,
Version 2.1, 2006

[20] OMG, Unified Modeling Language:
Superstructure, version 2.1.1, February 2007

[21] Qualiware, Qualiware,
http://www.qualiwareinc.com/, accessed May
2007

[22] Pearl, J., “Probabilistic Reasoning in Intelligent
Systems: Networks of Plausible Inference”,
Morgan Kaufmann, 1988.

[23] Scheer, A.-W., Business Process Engineering:
Reference Models for Industrial Enterprises, 2nd
ed., Springer-Verlag, 1994.

[24] Spewak, S.H., Hill. S.C., “Enterprise
Architecture Planning. Developing a Blueprint
for Data, Applications and Technology”, John
Wiley and Sons, 1992

[25] Srinivas S., “A Generalization of the Noisy-OR
Model”, Proceedings of 9th Conference on
Uncertainty in Artificial Intelligence, pp. 208-
215, 1993.

[26] Telelogic, System Architect,
http://www.telelogic.com/products/systemarchite
ct/, accessed: May 2007.

[27] The Open Group. The Open Group Architecture
Framework, Version 8, 2005

[28] Troux Technologies, Metis,
http://www.troux.com/products/, accessed May
2007

[29] Zachman, J., A framework for information
systems architecture, IBM Systems Journal,
26(3), 1987

