
 Iranian Journal of Mathematical Chemistry, Vol. 6, No. 1, March 2015, pp. 81  92 IJMC 

 

Dynamical Behavior And Synchronization Of Chaotic 
Chemical Reactors Model 

HOSSEIN KHEIRI1 AND BASHIR NADERI2 

1Faculty of Mathematical Sciences, University of Tabriz, Tabriz, Iran 

2Department of Mathematics, Payam Noor University, I. R. of Iran 

Correspondence should be addressed to b_naderi@pnu.ac.ir 

Received 14 December 2014; Accepted 4 January 2015 

ACADEMIC EDITOR: IVAN GUTMAN 

 
 

ABSTRACT In this paper, we discuss the dynamical properties of a chemical reactor model 
including Lyapunov exponents, bifurcation, stability of equilibrium and chaotic attractors as 
well as necessary conditions for this system to generate chaos. We study the synchronization 
of chemical reactors model via sliding mode control scheme. The stability of this proposed 
method is proved by Barbalate’s lemma. Numerical Simulation is provided for illustration and 
verification of the proposed method. 
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1. INTRODUCTION 

Chaos, is an interesting phenomenon in nonlinear dynamical systems, has been studied over 
the last four decades [2, 16, 20, 23, 24, 31, 32]. Chaotic and hyperchaotic systems are 
nonlinear deterministic systems that displays complex and unpredictable behavior. Also 
these systems are sensitive respect to initial conditions. The chaotic and hyperchaotic 
systems have many important fields in applied nonlinear sciences, such as laser physics, 
secure communications, nonlinear circuits, control, neural networks, and active wave 
propagation [3, 4, 7, 13, 16, 17, 22, 25, 29]. 

The synchronization of chaotic systems has been investigated since its introduction 
in the paper by Pecora and Carrol in 1990 [24] and has been widely investigated in many 
fields, such as physics, chemistry, ecological science and secure communications [5, 14, 
31]. Various techniques and methods have been proposed to achieve chaos synchronization 
and anti-synchronization such as adaptive control [9, 19, 30], adaptive sliding mode control 
[26], sliding mode control [33], active control [10] and nonlinear control [1]. Fortunately, 
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some existing methods of synchronizing can be generalized to anti-synchronization chaotic 
systems. Recently synchronization of chaotic complex systems studied in [21]. 

Dynamics of chemical reactors model has been studied in [11, 12]. The chaotic 
behavior of chemical reactor model has been studied in [15] by means of computer assisted 
proof. Synchronization of two identical chemical reactors model has been obtained via 
linear feedback controller in [28]. 

We study dynamical qualitative behavior of chemical reactor model. For this 
purpose, we verify the stability of fixed points and characteristic of chaos for proposed 
model. We apply sliding mode to synchronization of the model. 

This paper is organized as follows: In section 2, the dynamical properties of 
chemical reactor model including Lyapunov exponents, bifurcations and stability of 
equilibria, will be discussed. We using sliding mode control method for chaos 
synchronization of two identical chemical reactors model in section 3. By using the 
Barbalate's lemma, proved that the error system is asymptotically stable in origin. In section 
4, numerical simulations are computed to check the analytical expressions. Our concluding 
remarks are presented in section 5. 

2. CHAOTIC CHEMICAL REACTOR MODEL  

Chemical dynamics in a well-stirred reactor provides one of the most clear-cut examples of 
complex non-equilibrium behavior, since it can generate deterministic chaos from the 
intrinsic nonlinearities of the dynamics. Since this form of chaos is amenable to a small 
number of macro variables, one may reasonably expect that it constitutes an ideal case 
study for understanding the passage from microscopic to macroscopic behavior [12]. 
Chaotic dynamics is characterized by its sensitivity to initial conditions and is sensitive to 
external disturbances. Questions such as chaotic dynamics amplify internal noises and 
destroy the macroscopic description, and what the deterministic chemical chaos would 
become in the picture of a microscopic description beyond the phenomenological kinetics, 
are of much interest. 

An interesting chemical system is established in [12], which is described by 
following relations: 

A + X  
       
⎯⎯

     
⎯⎯  2X,              X + Y 

        
⎯⎯

      
⎯⎯⎯  2Y,    A + Y 

      ⎯
 
    
⎯⎯  A ,    푋 + 푍  

        ⎯⎯

      
⎯⎯⎯  퐴  ,   퐴 + 푍 

      ⎯

   
⎯⎯   2푍, 

where 퐴 ,퐴  and 퐴  
 
are initiators, 퐴  and 퐴  are products. The corresponding nonlinear 

dynamic system is introduced, as follow: 
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푥̇ = 푎 푥 − 푘 푥 − 푥푦 − 푥푧
푦̇ = 푥푦 − 푎 푦                          
푧̇ = 푎 푧 − 푥푧 − 푘 푧 ,        

                                                               (2.1) 

where 푥,푦 and 푧 are positive functions, and 푎 ,  푎 ,  푎 ,  푘   and 푘
 

are positive 
parameters. Now we discuss some properties of (2.1). 

The equilibrium points of system (2.1) can be find by solving the following 
equations: 

 
푎 푥 − 푘 푥 − 푥푦 − 푥푧 = 0
푥푦 − 푎 푦 = 0                         
푎 푧 − 푥푧 − 푘 푧 = 0.        

                                                                      (2.2) 

Applying Groebner basis and elimination theory [8], equilibrium points of (2.1) are 
obtained: 

 
퐸 = (0, 0, 0)     퐸 = (푎 , 푎 − 푎 푘 , 0)                                                                       
퐸 = , 0, 0 퐸 = 푎 ,  ,                                         

퐸 = (0, 0,  ) 퐸 =  ,0,  .                                                       
  (2.3) 

The Jacobian matrix of system (2.1) is: 

퐽 =
푎 − 2푘 푥 − 푦 − 푧 −푥 −푥

푦 −푎 0
−푧 0 푎 − 푥 − 2푘 푧

.                                                 (2.4) 

The eigenvalues of J  at 퐸  (푖 = 1,2, … ,6) for and 푎 = 30, 푎 = 16.5,  푎 =
10,  푘 = 0.5 and 푘 = 0.5 are: 

 
휆 = (−10, 16.5, 30)            휆 = (−7.5 + 푖15.612,−7.5− 푖15.612, 6.5)                 
휆 = (−30,−10,−43.5)     휆 = (1.186,−11.343 + 푖5.978,−11.343 − 푖5.978)
휆 = (−16.5,−3,−10)       휆 = (50.25 + 푖3.526, 50.25 − 푖3.526,−10)               

            (2.5) 

So 퐸 ,퐸 ,퐸  and 퐸  are locally unstable equilibrium points, 퐸  and 퐸  

 

are locally 
stable. Figure 1, 2 show that the Lyapunov exponents and bifurcations of chemical reactors 
system (2.1) for 푎 = 16.5,  푎 = 10,  푘 = 0.5, 푘 = 0.5 and 28 < 푎 < 42, with 
initial conditions 푥(0) = 5, 푦(0) = 17 and 푧(0) = 0.3. This means that system (2.1) for 
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the some values of 푎  is a chaotic system, since one of its Lyapunov exponents, is positive. 
Also it is a dissipative system, because sum of its Lyapunov exponents is negative. Figure 3 
shows the attractors diagrams of system (2.1). The attractors are bounded but not a fixed 
point or limit cycle. It is a property of chaotic systems [6].  

 

 

Figure 1: Lyapunov exponents of (2.1), for 푎 = 16.5,  푎 = 10,  푘 = 0.5, 푘 = 0.5 
and  28 < 푎 < 42, with initial conditions 푥(0) = 5,푦(0) = 17 and 푧(0) = 0.3. 

  

3. SYNCHRONIZATION VIA SLIDING MODE CONTROL 

For synchronization, assume the drive and response systems are defined as follow: 

푥̇ = 푓(푥),                                                                                  (3.1) 

푦̇ = 푔(푦) + 푢,                                                                           (3.2) 

where 푥 = (푥 ,푥 , … , 푥 ) , 푦 = (푦 ,푦 , … ,푦 ) 휖ℝ  are the state vectors of the systems 
(3.1) and (3.2), and 푢 = (푢 ,푢 , … ,푢 )

 

is an 푛-dimensional control signal. Let 푒 = 푦 − 푥, 
is the error of synchronization. Then, the error dynamical system between drive and 
response systems is: 

푒̇ = 푦̇ − 푥̇ = 푔(푦) − 푓(푥) + 푢 = 푔(푒 + 푥)− 푓(푥) + 푢.                                         (3.3) 



Dynamical Behavior and Synchronization Of Chaotic Chemical Reactors Model                                            85 

  

 

Figure 2. Bifurcation diagrams of (2.1), for 푎 = 16.5,  푎 = 10,  푘 = 0.5, 푘 = 0.5 
and  28 < 푎 < 42, with initial conditions 푥(0) = 5,푦(0) = 17 and 푧(0) = 0.3. 

 

The goal is to design an appropriate sliding mode controller 푢 such that for any initial 
condition 푥  and 푦 , we have: 

lim
→

‖푒‖ = lim
→
‖푦(푡) − 푥(푡)‖ = 0, 

where ‖.‖ is the Euclidean norm. 
For studying chaos synchronization of chemical reactor model for parameter values 

푎 = 30, 푎 = 16.5,  푎 = 10,  푘 = 0.5 and 푘 = 0.5 which generates chaotic 
behavior. We use the idea of sliding mode control technique for synchronization of two 
identical chaotic systems and stability obtained by Barbalate's lemma [18, 24, 27]. 

Our aim is to design a controller and make the response system follow the drive 
system, until they ultimately become the same. Let, the drive and response systems are 
defined as follow: 
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푥 ̇ = 푎 푥 − 푘 푥 − 푥 푦 − 푥 푧
푦̇ = 푥 푦 − 푎 푦                               
푧 ̇ = 푎 푧 − 푥 푧 − 푘 푧             

                                                                (3.4) 

and 

푥 ̇ = 푎 푥 − 푘 푥 − 푥 푦 − 푥 푧 + 푢
푦̇ = 푥 푦 − 푎 푦 + 푢                              
푧 ̇ = 푎 푧 − 푥 푧 − 푘 푧  + 푢  ,         

                                                       (3.5) 

where  푢 , 푢  and 푢  are control functions. We discuss the synchronization via sliding 
mode control. Let 푒 = 푥 − 푥 , 푒 = 푦 − 푦   and 푒 = 푧 − 푧 . Then the error dynamical 
system of (3.4) and (3.5) is: 

 
푒 ̇ = 푒 [푎 − 2푘 푥 − 푦 − 푧 + 푘 푒 − 푒 − 푒 ] + 푈
푒̇ = 푒 [푒 + 푥 − 푎 ] + 푈                                                     
푒 ̇ = 푒 [푎 − 푥 − 2푘 푧 − 푒 −  푘 푒 ] + 푈  ,             

                                (3.6) 

 

Figure 3. Attractor of (2.1), for 푎 = 30, 푎 = 16.5,  푎 = 10,  푘 = 0.5 and 푘 = 0.5 
with initial conditions 푥(0) = 5,푦(0) = 17 and 푧(0) = 0.3. 
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where  

푈 = −푒 푥 − 푥 푥 + 푢
푈 = −푒 푦 + 푢               
푈 = −푒 푧 + 푢 .             

                                                                                    (3.7) 

Sliding mode control [18, 27] is a robust control method. The first step is to select an 
appropriate sliding surface. The sliding surface can be designed as: 
 

푠 (푡) = 휆 푒 (푡)     
푠 (푡) = 휆 푒 (푡)    
푠 (푡) = 휆 푒 (푡),   

                                                                                      (3.8) 

where surface parameters 휆  are positive constants. The next step is to determine an input 
signal 푈(푡) to guarantee that the error system trajectories reach to the sliding surface 
푠(푡) = 0. The sliding mode control law is proposed as: 
 

푈 = −휂 푠푖푔푛 (푠 )
푈 = −휂 푠푖푔푛 (푠 ) 
푈 = −휂 푠푖푔푛 (푠 ),

                                                                                               (3.9) 

where 휂 , (푖 = 1,2,3) are the switching gain and positive. By note that the chaotic 
properties all states of (3.4) and (3.5) are bounded, then there exist 퐿 ,퐿  and 퐿  such that: 
 

푎 − 2푘 푥 − 푦 − 푧 + 푘 푒 − 푒 − 푒 < 퐿
푒 + 푥 − 푎 < 퐿                                                   
푎 − 푥 − 2푘 푧 − 푒 −  푘 푒 < 퐿               

                                                      (3.11) 

We note that 푥 ,푦  and 푧  are positive and bounded mole functions. 
 
Theorem 3.1. Consider the error dynamics (3.6), this system is controlled by 푈(푡) in (3.9), 
Such that 휂 = 2퐿 |푒 |,   휂 = 2퐿 푒   and 휂 = 2퐿 |푒 |. Then the error system 
trajectories will converge to the sliding surface 푠(푡) = 0. 
 
Proof. We define the Lyapunov function as follow  

 푉(푡) = ∑                                                                                     (3.11) 

there for 
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푉̇ = ∑ ̇ = 푒 푒 ̇ + 푒 푒 ̇ +푒 푒 ̇                                                                              

= 푒 푎 − 2푘 푥 − 푦 − 푧 + 푘 푒 − 푒 − 푒 + 푒 [푒 + 푥 − 푎 ]
+푒 [푎 − 푥 − 2푘 푧 − 푒 −  푘 푒 ] + 푒 푈 +푒 푈 + 푒 푈 ,        

               (3.12) 

then 

푉̇ < 푒 퐿 + 푒 퐿 + 푒 퐿 + 푒 푈 +푒 푈 + 푒 푈
= 푒 퐿 + 푒 퐿 + 푒 퐿 − 휂 |푒 |− 휂 푒 − 휂 |푒 |.

                                              (3.13) 

If we let  휂 = 2퐿 |푒 |,   휂 = 2퐿 푒   and 휂 = 2퐿 |푒 | then we have 

푉̇ < − 퐿 푒 + 퐿 푒 + 퐿 푒 = −퐿|푠| = −휔(푡) ≤ 0                                         (3.14) 

where 퐿|푠| = 휔(푡) ≥ 0. Integrating equation (3.14) from zero to 푡 yields: 

푉(0)− 푉(푡) ≥ 0 ⟹푉(0) ≥ 푉(푡)
푉(0)− 푉(푡) > ∫ 휔(휏)푑휏.                                                                              (3.15) 

Then lim → ∫ 휔(휏)푑휏 exists and is positive. Thus, according to the Barbalate's 
lemma [18], we have: 

lim → 휔(푡) = lim → 퐿|푠| = 0.                                                         (3.16) 

Since 퐿 is greater than zero, (3.16) implies 푠 = 0. This completes the proof.                       ▄ 
 
4. NUMERICAL SIMULATION 

To demonstrate and verify the validity of the proposed scheme, we discuss and illustrate the 
numerical simulations results for synchronization of two identical chaotic chemical reactor 
model. 

For synchronization, systems (3.4) and (3.5) with controllers (3.7) are solved 
numerically by Maple 16 with Runge-Kutta method of order four. 

By assuming 푎 = 30, 푎 = 16.5,  푎 = 10,  푘 = 0.5, 푘 = 0.5 and with initial 
conditions 푥 (0) = 15,  푦 (0) = 17,  푧 (0) = 3,  푥 (0) = 1,  푦 (0) = 5,  푧 (0) = 5,  the 
proposed system in section 2 is chaotic. Also, we assume the constant parameters in 
controllers rule are 퐿 = 0.1,  퐿 = 0.5,  퐿 = 1 and 휆  (푖 = 1,2,3) which are arbitrary 
positive constant. 

The results of chaotic synchronization of two identical chaotic chemical reactor 
model via sliding mode control are shown in Figure 4. This shows the synchronization of 
(3.4) and (3.5) is achieved after small time interval. The errors due of synchronization are 
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plotted in Figure 5. As expected from the above analytical considerations the 
synchronization errors 푒 ,  푒  and 푒  converge to zero as 푡 → 0. 

 

 

Figure 4. Synchronization of (3.4) and (3.5) with different initial conditions. 

 

Figure 5. Error due synchronization of (3.4) and (3.5) with different initial conditions.  
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5. CONCLUSION 

In this paper, we studied the dynamics of a chaotic chemical reactor system. The basic 
properties of chemical reactor model such as Lyapunov exponents, chaotic attractors, 
equilibria and their stability was discussed. For synchronization, we used sliding mode 
controller scheme. Obtained controllers laws were satisfied in Barbalate's lemma. 
Numerical simulations were given to show the effectiveness of study method. 
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