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Abstract

This paper proposes an expert system called VIBEX (VIBration EXpert) to aid plant operators in diagnosing the cause of abnormal

vibration for rotating machinery. In order to automatize the diagnosis, a decision table based on the cause-symptom matrix is used as a

probabilistic method for diagnosing abnormal vibration. Also a decision tree is used as the acquisition of structured knowledge in the form of

concepts is introduced to build a knowledge base which is indispensable for vibration expert systems. The decision tree is a technique used

for building knowledge-based systems by the inductive inference from examples and plays a role itself as a vibration diagnostic tool. The

proposed system has been successfully implemented on Microsoft Windows environment and is written in Microsoft Visual Basic and Visual

CCC. To validate the system performance, the diagnostic system was tested with some examples using the two diagnostic methods.
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1. Introduction

Rotating machinery is widely used in industry and is a

critical machinery. Due to the high operating speed, large

load and severe working conditions, when a fault occurs it

needs to be identified for possible causes and conduct

remedical action immediately. Condition monitoring has

been used to detect an abnormality of the machine and use to

detect incipient failures in rotating machinery and plays a

significant role in preventing dangerous accidents from

occurring and in improving economic efficiency. To detect

an abnormal condition, vibration information is widely

used, since vibration signals contain the dynamic charac-

teristics of the machine condition and therefore early

detection of incipient failure can be easily detected

(Kanki, Yasuda & Umemura, 1993).

Diagnosis is a process of locating the exact cause(s) of a

failure or a fault. Once a failure has been detected, the

maintenance engineer is to identify the symptoms, analyze

the symptomatic information, interpret the various error
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messages and indications and come up with the right

diagnosis of the situation in terms of which components

may have caused the fault and the reasons for the failure of

the components. Since a machine has many components and

is highly complex, diagnosis of a machine fault usually

requires technical skill and experience. It also requires

extensive understanding of the machine’s structure and

operation, and some general concepts of diagnosis. This

requires an expert engineer to have a domain specific

knowledge of maintenance and knows the ‘ins-and-outs’ of

the system. In a normal situation, the expert is either too

busy with some other tasks or a specific component expert is

not available at all (Patel & Kamrani, 1996).

In order to better equip with a non-expert to carry out the

diagnosis operations, it would be wise to present the cause-

symptom relationship in a tabular form for quick compre-

hension and a coincise representation. However, advanced

knowledge and experience of an expert are required to

analyse the causes, since the vibration signals from the

machine are the results from changes of various conditions

and are very complex and complicated. Due to high

performance and complexity of the system, an approach to

define the relationship between the causes and the resulting
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symptoms is needed. For examples, decision table (DTA)

(Baesens, Setiono, Mues & Vanthienen, 2003), decision tree

(DT) (Kim & Koehler, 1995; Quinlan, 1993; Yang, Part, &

Kim, 2000) and decision graph (Kohavi & Li, 1995;

Oliveira & Sangiovanni-Vincentelli, 1996) are some of the

practical and popular approaches to meet the objectives of

clarity, conciseness, and comprehensibility. These tech-

niques lend themselves to computerized analysis and

evaluation and can be easily incorporated into the expert

system (ES). Many researchers have tried to establish ways

for using them in vibration diagnostics. Consequently,

vibration diagnostics expert systems have recently been

developed to represent knowledge of human experts in a

structured manner (Gemmell, MacDonald & Stewart, 1998;

Kuhnell, Mingfei & Anvar, 1991; Liu & Chen, 1995).

An ES consists of a knowledge base and a reasoning

engine. Many methods have been proposed to date. The

combination of probabilistic and statistic method is one of

the most popular methods adopted in ES. This method

consists of a modeling system which uses the expert’s

reasoning process, since knowledge and experience of the

expert is the result obtained from many cases resulting in

practical field.

This study presents an integrated diagnostic expert

system VIBEX (VIBration EXpert) that can be applied to

fault diagnosis of rotating machinery using vibration signal.

The proposed system combines two techniques; a DTA

which is constructed on known cases and a DT which is

constructed to make classification modeled by the inductive

acquiring process.
2. Expert system (ES)

The proposed VIBEX is a consultation program based on

computer system which approaches certain problem area

based on practical knowledge (Gemmell, MacDonald, &

Stewart 1998). VIBEX is an expert system which supports

various functions and the schematic of the system is shown

in Fig. 1. The system consists of two programs, VIBEX-

TBL and VIBEX-DT. VIBEX-TBL is used to query the

diagnostic process using DTA with cause-result matrix

which represents the causes of vibration and machine
Fig. 1. Schematic of VIBEX.
conditions. Also, this system contains a DTA editor which is

used to input, modify and delete the vibration information.

Since VIBEX-TBL has 42 embeded abnormal causes of

vibration and 31 vibration symptoms according to five

vibration information groups, it can be directly applied to

diagnosis a problem. VIBEX-DT is used to query the

process using a DT which is constructed by training the

data. In the VIBEX-DT, a DT generator can be used directly

and easily to construct the DT to diagnose the rotating

machinery with an intuitive and conversational method.

VIBEX-TBL has an advantage when use to diagnose

complicated vibration causes because VIBEX-DT can grasp

the causes of vibration and narrows the criteria. The

combined systems complement each other. The system

program runs on Windows platform and has a convenient

user interface. Visual Basic and Visual CCC were used for

developing the diagnostic system.
2.1. VIBEX-TBL
2.1.1. Construction of DTA

An expert builds an association (such as DTA) between

the causes of fault and symptoms from an empirical

knowledge gained either by direct experience with the

system or through another expert in the field. This tabulation

of causes-symptoms is usually expressed in the form of IF

(symptom) and THEN (cause). A set of rules is then built to

serve as a knowledge base of the expert system. Based on the

embedded knowledge base, the diagnostic process is

conducted using the information from Table 1. The users

can select the information on a predominant frequency,

direction and location of the predominant amplitude, and the

amplitude response during starting up and shutdown from the

symptom information as shown in Table 1. The Bayesian

algorithm is then used to obtain the confidence factors cf. It

can be used in conjunction with the decision tree system since

it is possible to determine the probabilities of the causes of

vibration rather than designating one or two causes.
2.1.2. Bayesian algorithm

Bayesian algorithm is adopted in the expert system. This

algorithm is based on the probabilistic theory (Bley, 1996)

which calculates the probability of an accident occurring

based on the known information and cases.

When a vibration cause Bj occurs, there are n symptoms,

Ai (iZ1,2,.,n), which can induce Bj. The probability that

the vibration symptom Ak occurs relative to the cause Bj is

given as follows.

PðAkjBjÞ Z
PðBjhAkÞ

PðBjÞ
Z

PðBjhAkÞPn
iZ1 PðBjhAiÞ

(1)

where n is the number of symptoms about one item of a

cause.

If the number of the symptoms is two, we combine the

confidence factor using the Eq. (2). When P(AkjBj)



Table 1

Symptom information

Symptom domain Descriptor

Predominant frequency 0–40% of running frequency

40–50% of running frequency

50–100% of running frequency

1/2X of running frequency

1/4X of running frequency

Running frequency (1X)

Twice running frequency (2X)

Lower multiples

Higher multiples

Very high frequencies

Odd multiples

Direction of vibration Vertical

Horizontal

Axial

Location of vibration Shaft

Bearings

Casing

Foundation

Piping

Coupling

Amplitude response (start-up) Amplitude remains constant

Amplitude increases

Amplitude decreases

Amplitude fast maximum

Amplitude increases suddenly

Amplitude decreases suddenly

Amplitude response (shutdown) Amplitude remains constant

Amplitude increases

Amplitude decreases

Amplitude increases suddenly

Amplitude decreases suddenly

Table 2

Part of the decision table (Jackson, 1990)

Symptoms Items of a symptoms Vibration causes

Initial

unbalance

Misalignment

Predominant

frequency

0–0.48X 0.05

1X 0.90 0.40

2X 0.05 0.50

Higher multiples 0.05 0.10

1/2X

1/4X

Lower multiples

Direction and

location of

predominant

amplitude

Vertical 0.40 0.20

Horizontal 0.50 0.30

Axial 0.10 0.50

Shaft 0.90 0.80

Bearing 0.10 0.10

Casing 0.10

Foundation

Piping

Coupling

Amplitude

response to

speed vari-

ation

Stays same 0.20

Increase 1.00 0.30

Decrease 0.10

Peaks

Comes suddenly 0.20

Drops out suddenly 0.20
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corresponds to each item of the symptom, cf1 and cf2, the

combined confidence factor C(cf) is given as follows.

Cðcf Þ Z cf1 Ccf2 K ðcf1 !cf2Þ (2)

if we combine the n confidence factors and the final

equation is given as follows.

Cðcf Þ Z Cðcf ÞCcfi K ðCðcf Þ!cfiÞ ði Z 1; 2;.; nÞ (3)

if iZ1 then C(cf)Zcfi.

Repeating this process for the vibration cause Bj, we will

get each confidence factor relative to the causes of vibration.

Table 2 shows part of the tabulation of causes-symptoms

introduced by Sohre (1968) which considered only the

initial unbalance and misalignment. The data in each

category are percentages of possibilities based on experi-

ence. For example, with an initial unbalance there is a 90%

probability that this will occur at the running frequency (1X)

and 5% possibility it will appear at twice the running

frequency (2X) and other higher multiples. If the ‘pre-

predominant frequency’ is 1X, the confidence factor of the

symptom, predominant frequency is 0.86 from Eq. (1). With

this one can calculate the confidence factors of other

symptoms. Therefore, we can calculate the confidence

factor of ‘initial unbalance’ using Eq. (3). In the same way,
the final confidence factor of each vibration cause is

calculated. This process can be repeated for other causes

of vibration, for example ‘misalignment’.
2.2. VIBEX-DT

VIBEX-DT adopts the DT which is a typical algorithm

used for construction of model of knowledge used by a

human expert (Yang, Park & Kim, 2000). Among the data

mining techniques, DT is one of the most frequently used

methods for knowledge discovery. DT is used to discover

rules and relationships by systematically breaking down and

subdividing the information contained in data (Chen, Hsu &

Chou, 2003). Some of the popular algorithms used for the

classification tree are CART (Breiman, Friedman, Olshen &

Stone, 1984), ID3 (Quinlan, 1986) and C4.5 (Quinlan,

1993). The latter algorithm (C4.5) is adopted in the present

work.
2.2.1. Construction of DT

To generate the DT for machine diagnosis, it requires

definition of classes which represents vibration causes; and

attributes which represents the vibration phenomena

required for sets of samples for machine learning. The

cause-symptom matrix (Jackson, 1990) introduced by Sohre

(1968) was regenerated inversely and the training data was

used to generate the DT. At first, the DT generating routine

was tested on Unix and then transported to PC platform

using Visual CCC and connected to Visual Basic 5.0. In

order to obtain reasonable results, the training data was



Table 3

Class of the decision tree

No. Class (cause of vibration)

1 Mechanical unbalance

2 Misalignment

3 Partial rub

4 Crack

5 Mechanical looseness

6 Ball bearing damage

7 Foundation distortion

8 Critical speed (1X resonance)

9 Subharmonic resonance

10 Oil whip/oil whirl

11 Vane passage vibration

12 Clearance induced vibration

13 Static eccentricity of airgap or stator damage

14 Dynamic eccentricity of airgap or rotor damage

Fig. 2. Structure of a decision tree from training set T.
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constructed using a trial-error method. When data required

by the DT were not known, probabilistic results were used

to obtain the process of unknown attributes. In the

diagnostic phase, querying method based on Kuhnell et al.

(1991) was adopted.

Since DT conducts supervised learning, a case represents

a set which describes its characteristics. Therefore, the

capacity of the decision tree depends on its ability to resolve

a complex process of determination into a set of simple

processes of determination. When generating the DT, a

training set is divided into more detailed observation by

following decision rules until one subset corresponds to a

certain class. This is very similar to displaying a hard disk

directory structure, which is shown in Fig. 2.

When T is a training set and if T is a null set or a set

having only one class, the simplest DT is a tree having a leaf

of that class. However, when X is a decision rule and having

output O1, O2,., On; each data of T include one of these

outputs. Therefore X generates a subsets {T1, T2,. Tn}

representing data having On. When each subset Ti replaces a

DT relative to Ti in the above process, the result is the final

of the entire DT.
Table 4

Attribute of the decision tree

No. Attribute

1 What is the predominant frequency?

2 Is there a natural frequency?

3 Is the 0.4–0.48X component predominant?

4 Is the 0.5–1X component predominant?

5 Is the bearing damage frequency predominant?

6 Is the vane passage frequency predominant?

7 Is the subharmonic predominent?

8 Is there harmonics of 1/2X component?

9 Is there intense noise at the high frequency area?

10 Is there a line frequency?

11 Is the two times frequency as large as the line frequency?

12 Is there a pulsation component, 2sfo?

13 Do phase and amplitude of 1X component change?

14 Do phase and amplitude of 2X component change?

15 Does runout vector change?

16 Is the axial amplitude larger than lateral amplitude?

17 Is the orbit shape leaning to one side or has eight figure shapes?

18 What is the direction of orbit?

19 How is amplitude change during shutdown?

20 What is the predominant location of vibration?
2.2.2. Selection criterion of attribute

The structure of DT depends very much on how a test X

is selected. Therefore the selection criterion of test X

becomes highly significant. In the present work, one

attribute is taken as the test and the values of attribute as

output. We then use information entropy evaluation

function based on the information theory (Quinlan, 1993)

as the selection criteria. This entropy evaluation function is

calculated in the following way.

Step 1: Calculate info(T) necessary to identify the class in

the training set T.

infoðTÞ ZK
Xk

jZ1

freqðCj; TÞ

jTj
!log2

freqðCj;TÞ

jTj

� �� �
(4)

where jTj is the number of cases in the training set. Cj is a

class, k is the number of classes and freq(Cj, T) is the

number of cases included in T.

Step 2: Calculate the expected information value,

infoX(T) for test X to divide into T.
infoXðTÞ Z
Xn

iZ1

jTij

jTj
!infoðTiÞ

� �
(5)

where n is the number of outputs for test X and Ti is a subset

of T corresponding to output i.

Step 3: Calculate the mutual information value acquired

from division according to test X.

gainðXÞ Z infoðTÞK infoXðTÞ (6)

Step 4: Calculate the dividing information value split

info(X) acquiring for T and divide into n subsets.

split infoðXÞ ZK
Xn

iZ1

jTij

jTj
!log2

jTij

jTj

� �� �
(7)

Step 5: Calculate the ratio of gain(X) over split info(X).

GRðXÞ Z gainðXÞ=split infoðXÞ (8)



Fig. 3. An example of final decision tree.
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The GR(X) compensates for the weak point of gain(X)

which represents the quantity of information provided by X

in the training set. Therefore, an attribute with the highest

GR(X) is taken as the root of the DT.
2.2.3. Evaluating unknown attribute

An attribute of an unknown attribute value incurs

shortage of usable information, since cases with

such attribute do not provide any useful information.
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Hence a generalized gain ratio must be calculated taking

into account the shortage of information.

If F is the ratio of cases with known attribute values

relative to the entire cases for attribute A, the generalized

gain(X) and the split info(X) are calculated according to

Eqs. (9) and (10), respectively.

gainðXÞ Z F !finfoðTknownÞK infoxðTknownÞg (9)

split infoðXÞ ZK
XnC1

iZ1

jTij

jTj
!log2

jTij

jTj

� �� �
(10)

where Tknown is a set of cases with known outputs.

Therefore, the generalized gain ratio GR(X) is calculated

as follows.

GRðXÞ Z gainðXÞ=split infoðXÞ (11)
2.2.4. Definition of classes and attributes

In VIBEX-DT, 14 classes (vibration causes) and 20

attributes (vibration phenomena) were used. The classes and

attributes used in this paper are shown in Tables 3 and 4,

respectively. If more classes and attributes are required,

these can be easily extended by updating the training set.
2.2.5. Final decision tree

Fig. 3 shows part of the final decision tree generated by

DT. In this figure, a folder icon implies a tree (or subtree),

while a note icon implies a leaf (vibration cause).
Fig. 4. Vibration spectrum of mis
2.2.6. Querying algorithm about unknown data

In Fig. 3, ‘multiple’ is selected from predominant

frequency menu. The system requires the shape of orbit

whether is ‘orbit eight’ or not. In this work we assume that

this information cannot be acquired. Then, VIBEX-DT

needs to know the condition of ‘axial amplitude’. In this

way, all possible causes are registered by the internal

function ‘register’, whereas ambiguous ones depend on

user’s selection. All processes are conducted by the

‘consult’ function in this system. The numerical values

within the bracket of each leaf are; the left value represents

the number of cases (Info1i) included in the entire training

data, while the second one is the number of cases (Info2i)

which is not included in the data. If the number of possible

causes is n, then the probability of each item, p(Infoi) is

given by Eq. (12).

pðInfoiÞ Z
Info1i K Info2iPn

kZ1ðInfo1k K Info2kÞ
(12)

The above value is displayed in a descending order.
3. Example

Fig. 4 shows a case history of high vibration amplitude

of a centrifugal pump due to misalignment. The pump runs

at 3600 rpm. In Table 5 shows the overall vibration

amplitudes for each location and direction of measurement.
alignment vibration signal.



Table 5

Overall vibration level

Location Direction Velocity (mm/s)

1 Vertical 2.210

1 Horizontal 3.175

2 Vertical 3.429

2 Horizontal 3.912

2 Axial 3.175

3 Vertical 27.203

3 Horizontal 40.665

4 Vertical 19.355

4 Horizontal 15.443

Fig. 6. Diagnostics result of VIBEX-DT.
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The vibration amplitude is highest at the horizontal

direction of inner bearing (position 3) with 40.665 mm/s.

The predominant frequency component is 120 Hz, i.e. 2!
revolution vibration, as shown in Fig. 4(b). In this case, from

the measured information, the direction, location and

predominant frequency and amplitude were acquired to

diagnose the pump vibration (Yang, 1998).
3.1. Application of VIBEX-TBL

In this example the predominant frequency is twice the

running speed and the amplitude was measured in the

horizontal direction at the axial bearing.

In VIBEX-TBL, the predominant frequency was first

selected. Next, two times the normal running frequency (2X)

was selected. This was followed by selecting the ‘horizontal’

from the second menu ‘direction of vibration’. Finally

‘bearing’ was selected from the ‘location of vibration’ menu.

If the inputting process is over, the user then select ‘show

result’ from the main menu. The final result, associated with

the confidence factor, was displayed on the screen, as shown

in Fig. 5. The figure shows five causes with 42 total causes are

recommended as candidate for causes of vibration.
3.2. Application of VIBEX-DT

In VIBEX-DT, assuming that the predominant frequency

equals to two times the rotating speed is selected, then
Fig. 5. Diagnostics result of VIBEX-TBL.
‘runout-change’ is displayed. However, that information is

not available and therefore need to select ‘please select this, if

you have insufficient data’. In the following ‘shut-down’

menu, since the information is not available, the same as in

the runout-change menu is done. Finally, we select ‘bearing’

from the ‘location of vibration’ menu. The diagnostic result

then is displayed on the screen as shown in Fig. 6. We can

then decide the cause of vibration is due misalignment.
4. Conclusions

This paper describes the development a vibration

diagnostics expert system, VIBEX, which enables operators

of rotating machinery to solve vibration problems, when

they cannot access the expert’s knowledge. The expert

system is used to provide information possible to replace the

expert’s advice. Since VIBEX embeds the cause-result

matrix containing 1800 confidence factors, it is suitable to

monitor and diagnose the rotating machinery. Furthermore

this system can be applied to other rotating machinery such

as turbo-machinery. Comparing VIBEX-TBL and VIBEX-DT,

the two systems well performed in machine diagnostics and

are robust even for cases when information are not

available. VIBEX-DT diagnoses more efficiently than

VIBEX-TBL. VIBEX-DT deals with 14 vibration causes

and the probability are higher then other causes. The

system will be upgraded and developed with higher

efficiency and accuracy and specialized knowledge base

in the system for specific machines.
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