
A Method for Solving the Performance Isolation Problem in PaaS Based on
Forecast and Dynamic Programming

Jiayang Yu
No. 800, Dong Chuan Road

School of Software, Shanghai JiaoTong University
Shanghai, China

E-mail: imcharles@sjtu.edu.cn

Ruonan Rao
No. 800, Dong Chuan Road

School of Software, Shanghai JiaoTong University
Shanghai, China

rao-ruonan@cs.sjtu.edu.cn

Abstract—As a Platform as a Service (PaaS) designer, we
should satisfy customers’ demands of resources and to save
resources in a cloud at the same time. In PaaS, one of the main
problems is that if one of virtual machines’ (VM) workload
increases fast in a host, other VMs’ performance
characteristics may be influenced negatively. To solve the
performance isolation problem, this paper gives a method. In
this method, we use an algorithm to forecast all VMs’
resources usage at first. Then we find which VMs’ workloads
may increase fast in future. We move these VMs to hosts which
have more resources and other VMs’ performance
characteristics will not be affected at the same time. So the
main problem now is which hosts we should use to move these
VMs as mentioned above to. In this paper, we use Dynamic
Programming method to solve this problem. So, with all of
these algorithms, in this paper, we propose a strategy to solve
Performance Isolation problem in PaaS.

Keywords-cloud computing; PaaS; forecast; performance
isolation; dynamic programming

I. INTRODUCTION
Cloud computing is now not only a concept in computer

science field but also a great business model in many other
fields. But nowadays lots of people have got a misconception
that resources in a cloud computing environment are infinite
or unlimited. In [1], authors remind us that we should avoid
this misconception and provide customers the resources as
they really need.

A service-level agreement (SLA) is a part of a service
contract where the level of service is formally defined. [2] In
SLA customer and services provider will make multiple
agreements include how many resources services providers
may provide to customer. A SLA is a contract. So it is very
important to services providers that they should not breach
the SLA at any time or they will bear the liability for breach
of contract.

As we all know, an application may not use resources in
upper bound all the time which is set in SLA. So one of the
basic ideas is to allocate more resources to virtual machines
(VM) in a real machine host and total of these resources in
all VMs are more than the real machine host has. To ensure a
services provider won’t breach SLA, we should make sure
that if one of VMs’ workload increases fast in a host, other
VMs’ performance may not be influenced. This problem is
called Performance Isolation problem. To solve this problem,

we could move such kind of VMs to other hosts which have
more idle resources. As moving a VM to another host may
cost lots of time, we should know which VM’s workload
may increase fast in advance. This forecast needs not to be
most accurate because we just want to know the increasing
risk or trend of VM’s resources demands.

The strategy to move VMs is another problem. If we
move a VM with high workload to a host which has fewer
resources, the performance isolation problem still exists. If
we move the VM to a host which has lots of resources with
none other VMs, it’s very wasteful. We need find a suitable
way to move these VMs.

II. RELATED WORK
In 2005, Chen Guang, et al. made a research in Curve

Fitting [3] and give an algorithm. If we got history data of
every kind of resource of a VM, we could use this algorithm
to get the curve of this VM and then we could forecast the
trend of the resource incensement.

In 2010, Chen Xu had a survey of performance
management in his master thesis [4], the authors combine the
SLA provided for tenants of the largest number of active
users to detect the offending tenants, once the monitor found
the active users are too many for a long time, then determine
the tenant for unauthorized users. Due to the presence of
unauthorized users will lead to the performance of other
tenants damaged; it will be re-consultation with the tenants
and the development of a new SLA.

In 2011, Javier Espadas, et al. had a survey of
tenant-based resource allocation model [5]. The authors
believe that the VM resources are allocated to tenants
depending on the number of active users of the tenant.
Therefore, the authors propose a set of active users based
multi-tenant virtual machine resource allocation algorithm.

In 2008, Zhi Hu Wang, et al. had a survey of
performance evaluation [6]. The authors used x-axis and
y-axis. The x-axis includes isolation, security, customization,
and scalability. The y-axis includes performance,
manageability, and development efficiency. The authors
think that a good multi-tenant application should be as much
as possible to improve the quality attributes. Allocation of
resources should meet the demand for resources for these
quality attributes.

2012 Fourth International Conference on Computational and Information Sciences

978-0-7695-4789-3/12 $26.00 © 2012 IEEE

DOI 10.1109/ICCIS.2012.23

947

III. FORECAST AND DYNAMIC PROGRAMMING BASED
SOLUTION

In Forecast and Dynamic Programming Based Solution
(FDPBS), we designed the architecture as the simple class
diagram shows in figure 1.

Figure 1. FDPBS Architecture Class Diagram.

As we need to know which VM’s resources demand may
increase fast, we should monitor every VM in all hosts to get
their history monitor data at first. In this paper we take CPU
and memory for example. We don’t care how to monitor
these VMs. What we need is the data. In this paper, we used
XML files to save these VMs’ monitor data. In this XML file,
we record a VM’s id, IP address, host, CPU resource upper
bound; memory resource upper bound and history monitor
data. We don’t have to know these data in real time because
we just want to know the trend of VMs’ resource demands.
So it is needless for us to design an Observer-Listener
architecture, we just let the VMMonitor class to monitor all
the VMs at short intervals. As we all know, operations to
VMs may cost lots of time. If we monitor VMs too many
times in a short period, last VMs’ operations may not finish.
By our experience, 10-15 times an hour is proper. It depends
on your platform.

The PolyFitForecast class is to calculate the polynomial
curve by history monitor data with dichotomy curve fitting
algorithm. Then calculate the next possible data in next
period by the curve. We cannot say that VMs’ resource
demands must meet the polynomial formula; in fact the
curve is irregular. But nowadays hardware resources such as
memories are very cheap. A 32-bit VM may have got 4G
memories. For example, the forecast error in 100 Mb is not
conclusive and the same to other resources. So let’s analysis
it, in real environment, it is very rare that VMs’ resource
demands increase by exponential in a small time period. The
logarithm increment is smaller than polynomial increment; to
forecast the suddenly increment of resource demands
polynomial curve is better.

The VMResourceCal class is to calculate a Strategy
Stack (SS) and the VMExcute class is to execute this SS.
The stack is to save every VM’s operations. VMResourceCal
class should tell VMExcute class what to do by this stack.
By forecast calculation, we could find which VMs we should
move to other hosts according to SLA. Now we should solve
the problem that which hosts could hold these VMs. We use
dynamic programming to solve the problem. This problem is
just like the 0-1 Knapsack problem [7]. We’ve got lots of
hosts. And the idle resources in these hosts are the knapsack
bags, the VM which should be move to other hosts are the
treasures, and the VMs’ resources demands are the treasures’
value and weight. The 0-1 Knapsack problem’s dynamic
programming solution is like below:

The input is value (weight) vm for VMs 1 to n; number

of distinctVMs n; host knapsack capacity W. Each W in this
algorithm represents to one host. And the algorithm of VM
Migration Strategy is like below:

At first we calculate all the hosts’ idle resources to get

the BagSet. We sort the set in order to get the biggest bag in
the set every time. And then we calculate the VMs’ forecast

for host from 0 to m do
 Calculate host’s idle resources
 set the host to BagSet

end for

Sort(BagSet)

for vm from 0 to n do
 PolyFitForecast(vm)
 if (vm has to be moved)
 set the vm to TreasureSet
 end if

end for

for i=0 to from BagSet.size()
SS.put(Knapsack(TreasureSet, host[i], n))
TreasureSet.delete(vm.moved)

end for

for vm from 0 to W do
T[0, vm] := 0

end for

for i from 1 to n do

for j from 0 to W do
if j >= vm[i] then

T[i, j] := max(T[i-1, j], T[i-1, j-vm[i]] + vm[i])
else

T[i, j] := T[i-1, j]
end if

end for
end for

948

data as mentioned above to get the TreasureSet. At last we
use Knapsack Algorithm to get the SS.

VMExcute class will execute this SS to migrate VMs
from former hosts to target hosts.

IV. EXPERIMENT
In this paper, we use VMware vSphere Hypervisor (ESXi)

[8] to build a private cloud, use VMware vCenter Server [9]
to manage the environment and use Openfiler [10] to build a
storage area network (SAN) for all VMs in this private cloud.
The SAN is built in a host with 2T storage.

We use other two hosts to hold the VMs and the detail
system parameter of them are showed below:

TABLE I. HOSTS’ DETAIL SYSTEM PARAMETER

Host name CPU (Model/Speed) Memory Storage
HostA 2* Intel Core 2

Duo E8400 /6144
MHz

2 GB Use SAN

HostB 2* Intel Core 2
Duo E8400 /6144
MHz

2 GB Use SAN

We create three VMs in HostB and one in HostA. Each

VM we allocate one CPU which speed is 3 GHz, allocate 1
GB Memory and 10 GB storage from SAN. Then we install
Apache Hadoop [11] in all these VMs. As we all know, a big
Hadoop job especially in its mapping jobs may cost lots of
resources in a cluster, so we used an example program called
WordCount to test our system. We prepared a big text file
which is 512 MB big to test.

In this paper, we only use ‘memory’ to be the experiment
parameter, because it is one of the main parameters of
resources and experiments using other resources are same to
this experiment.

In HostB, there are three VMs. Each of these VMs is
allocated 1 GB memory but there only 2 GB in the host. To
ensure the availability of the host, when using these three
VMs at the same time, the VMware platform will limit each
VM’s resources. It is clearly that we should prove that after
the system moves a VM from HostB to HostA the total
performance becomes better and the actions of the System is
necessary. In Figure 2 (and same to Figure 3 and Figure 4),
the unit of y-axis is MB and the unit of x-axis is percent of
mapping job progress.

Figure 2. Scene 1, Memory Usage of Three VMs without Migration &
without Forecast.

We designed three scenes in the experiment. In scene 1,
we don’t forecast the memory usage of each VM and don’t
move any VM. In scene 2, we don’t forecast the memory
usage of each VM but monitor them. If memory is not
enough we will move the VM to other host with idle
resources. In scene 3, we will forecast the memory usage of
each VM and move the VM to other host in advance.

As we can see in Figure 2, when the WordCount job is
running, the highest memory usage is about 350 MB. All of
three VMs’ memories are limited by the platform. Each
VM’s memory doesn’t reach the upper bound setting by user.
And in Figure 5, we can see the total time cost in the
WordCount job is about 19 minutes.

In scene 2, we delete the forecast model in our system
and just calculate if the resources are not enough and use the
dynamic programming to move the VM. In Figure 3, when
mapping job progress is to 40%, the biggest memory usage is
about 350 MB, the system decide to move a VM to HostA.
Then as we can see, all of these VMs’ memories allocations
are increased. The highest memory usage is about 600 MB.
In Figure 5, we can see the total time cost in the WordCount
job is about 13 minutes. All of these VMs’ performances are
protected after 40% mapping job.

Figure 3. Scene 2, Memory Usage of Three VMs with Migration &

without Forecast.

In Scene 3, we use the forecast algorithm to forecast the
usage of memories of all VMs and calculate if the resources
are not enough in advance. As we can see in Figure 4, when
the mapping job progress is to 30%, the system forecast the
usage of memories may become to about 350 MB, which
means the VMs’ memories may be limited by the platform.
So the system decides to move a VM to HostA. Then we can
see that the increasing rate of memories usage is never
limited then. The highest memory usage is about 800 MB. In
Figure 5, we can see the total time cost in the WordCount job
is about 10 minutes. All of these VMs’ performances are
protected during the whole mapping job.

0
100
200
300
400
500
600
700

0 10 25 30 40 50 60 70 80
vm1 vm2 vm3

0
100
200
300
400
500
600
700

0 10 25 30 40 50 60 70 80
vm1 vm2 vm3

949

Figure 4. Scene 3, Memory Usage of Three VMs with Migration & with

Forecast.

Figure 5. Word Count Cost Total Time in these Three Scenes.

As is mentioned above, the total performance of the
WordCount job in scene 3 is better than that in scene 2. And
the total performance of the WordCount job in scene 2 is
better than that in scene 1. That means in PaaS, performance
isolation problem is very important. If we don’t care about
this problem the performance of VMs may be very low. VM
Migration is important then; we can move a VM which need
lots of resources to other hosts. After migration, the
performances of VMs are ensured. Forecast work is very
useful. Although resource forecast may not be most accurate
in real environment, it may help us to find the risk of
resource shortage in advance. That means we could avoid the
performance risks. Dynamic programming helps us to find
an efficient way to place all VMs should be moved.

V. CONCLUTION
We design and implement the method of solving

performance isolation problem in PaaS. We use curve-fitting
forecast method to calculate resources usage of VMs in
advance and determine which VMs need to migrate. We use
dynamic programming method to decide a best strategy of
VM migrating. We design and finish an experiment to prove
the method of solving the performance isolation problem in
PaaS is right.

Next work, we will design a better math model of
curve-fitting to get a more accurate forecast result. We will
design a better method of resources calculating to cover
more scenes in PaaS.

REFERENCES

[1] Michael Armbrust, et al. Above the Clouds: A Berkeley View of
Cloud Computing, Electrical Engineering and Computer Sciences,
Technical Report No.UCB/EECS-2009-28, University of California
at Berkeley, 2009.

[2] Service-level agreement. 2012.
http://en.wikipedia.org/wiki/Service-level_agreement.

[3] CHEN Guang, REN Zhi-liang, SUN Hai-zhu. Curve Fitting in
Least-Square Method and Its Realization with Matlab. 2005.

[4] Chen Xu. Research on Performance Management Mechanism Based
On SLA in SaaS Application. 2010.

[5] Javier Espadas, et al. A Tenant-based Resource Allocation Model for
Scaling Software-as-a-Service Applications over Cloud Computing
Infrastructures. Future Generation Computer Systems, Accepted 24
October 2011.

[6] Zhi Hu Wang et al. A Study and Performance Evaluation of the
Multi-Tenant Data Tier Design Patterns for Service Oriented
Computing. IEEE International Conference on e-Business
Engineering. 2008.

[7] Knapsack problem. 2012. http://en.wikipedia.org/wiki/
Knapsack_problem

[8] VMware vSphere Hypervisior, http://www.vmware.com/cn
/products/datacenter-virtualization/vsphere-hypervisor/overview.

[9] VMware vCenter Server, http://www.vmware.com/cn
/products/datacenter-virtualization/vcenter-server/overview.

[10] Openfiler, http://www.openfiler.com .
[11] Apache Hadoop, http://hadoop.apache.org .

0
100
200
300
400
500
600
700
800
900

1000

0 10 25 30 40 50 60 70 80

vm1 vm2 vm3

00:00

07:12

14:24

21:36

Total Time

Scene1

Scene2

Scene3

950

