
Analysis of System Reliability for Cache Coherence Scheme in Multi-Processor

Sizhao Li1, Shan Lin1, Deming Chen3, W. Eric Wong4, and Donghui Guo1, 2, Senior Member, IEEE
1. Dept. of Electronic Engineering, Xiamen University, Fujian 361005, China

2. IC Design & IT Research Center of Fujian Province, Xiamen University, Fujian 361005, China
3. Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, IL 61801, USA

4. Department of Computer Science, University of Texas at Dallas, TX 75083, USA
sizhao.li@gmail.com, dchen@illinois.edu, ewong@utdallas.edu, dhguo@xmu.edu.cn

Abstract—In this paper, a cache coherence scheme in multi-
processor is introduced. There is a specific model in each kind
of software; cache coherence can be solved in AHB bus by
these models. First, we use dynamic address mapping policy to
realize data cache. Second, according to the randomness of
application environment that set up shared cache adaptive
configuration and management mechanism in the finite state
machine timing sequence model of each kind of software, to
ensure the system reliability. In order to support multi-tasking
and multi-user operator system – Linux, the multi-processor
must use shared memory technology, so this paper also
introduced the memory management unit, and base on these,
it focuses on how multi-processor and the AHB bus cooperate
to ensure cache coherence of the whole system. We can use
software execution model and hardware design to achieve
instruction or data coherence between each cache and main
memory.

Keywords- cache coherence, memory management, system
reliability, multi-processors, system failure.

I INTRODUCTION
Research on multi-processor has been an important part

of research in the field of microprocessors. Over the years, a
variety of hardware architectures have been proposed to
solve mutual cooperation and communication between the
multi-processor, so as to improve processing speed and
performance. In order to ensure the system reliability, it is
necessary to ensure that the data is correct in each processor
[1], cache provide instruction and data to the processor,
therefore, cache coherence is the most important [2].

Currently, a variety of multi-processor cannot work
without the cache on-chip [3]. In order to improve the
performance of system, we can use multi-level cache for
design on-chip commonly. Each processor unit usually has
its own private L1 cache or L2 cache, and they can also
share storage resources other on-chip through
interconnection [4]. Multi-processor is often running
different programs simultaneously; it needs to consider how
to configure storage resource on-chip and sharing
management issues, but different architecture adopts the
management model may not be the same, and the same time
the memory management has great complexity [5].
Therefore, optimal configuration of shared cache requires
instruction and data reuse based on different software or
environment to decide. If there is no good memory
coherence management protocol, error detection and repair
mechanism, the system might cause memory usage conflict

or data transfer error, and it might causes system instability
or collapse [6]. These errors will affect the whole system
reliability through Mean Time to Failures (MTTF), Mean
Residual Life (MRL) and other performance index [7].

The rest of this paper is organized as follows: Section II
describes the related work. Section III. This section
describes the mathematical model of cache coherence, and
at the same time, it is important of coherence from the
system reliability point of view. Section IV. This section
describes the evaluation results and presents the discussion.
Finally, conclusion will be included.

II SYSTEM RELIABILITY AND CACHE COHERENCE
PROTOCOL

System reliability indicates that the system is a capability
of complete specific function under the condition and the
required time [8]. Factors affecting the system reliability are
two aspects: one is self-reliability of system device; another
is effect of external condition.

A. Failure model
First introduced the following four key concepts, T is the

failure time, �(�) is the probability density function of the
failure time, and the distribution function is

�(�) = ��(� ≤ �) = 	 �(
)�

�

, � > 0

1) The Reliability Function can be defined as

�(�) = 1 − �(�) = 1 − 	 �(
)�

�

= 	 �(
)�

�

�

Where R(t) is the no failure probability of device unit in
the time interval (0, t].

2) The Failure Rate Function z(t) is the failure
probability of device unit in the time interval (t, t+Δt]

��(� < � ≤ � + ∆�|� > �) =
�� (� < � ≤ � + ∆�)

��(� > �)
=

�(� + ∆�) − �(�)
�(�)

Dividing both sides by t 0, and taking the limit, so

�(�) = lim
∆�→

Pr (� < � < � + ∆�|� > �)
∆� = lim

∆�→

�(� + ∆�) − �(�)
∆� ∙

1
�(�) =

�(�)
�(�)

2014 Eighth International Conference on Software Security and Reliability - Companion

978-1-4799-5843-6/14 $31.00 © 2014 IEEE

DOI 10.1109/SERE-C.2014.47

247

2014 Eighth International Conference on Software Security and Reliability - Companion

978-1-4799-5843-6/14 $31.00 © 2014 IEEE

DOI 10.1109/SERE-C.2014.47

247

2014 Eighth International Conference on Software Security and Reliability - Companion

978-1-4799-5843-6/14 $31.00 © 2014 IEEE

DOI 10.1109/SERE-C.2014.47

247

3) The Mean Time to Failure (MTTF) is

���� = �(�) = 	 ��(�)��
�

= 	 �(�)��
�

4) The failure time of device unit is T, it started
working at t=0, and has been working to the time t. And
then this reliability of device unit will be working normally
in time x which is

�(�|�) = ��(� > � + �|� > �) =
�� (� > � + �)

�� (� > �)
=

�(� + �)
�(�)

R(x|t) is called the conditional reliability function of
device unit in time x. And in time x, Mean Residual Life
(MRL) of device unit is

���(�) = �(�) = 	 �(�|�)��
�

=
1

�(�)
	 �(�)��
�

�

System failure is random, therefore, to represent cache
failure with the distribution function of failure. According to
the different of principle, failure can occur in discrete
distribution or continuous distribution. However, the data
error is a continuous distribution in the cache [9], so it
mainly discusses the continuous distribution. As shown in
Table I, there are five continuous distributions most
commonly.

TABLE I. SYSTEM FAILURE DISTRIBUTION

Distribution
Form

Failure Density Function
�(�)

Reliability Function R(t)

Exponential
Distribution λ���� ����

Weibull
Distribution ������!��(��)� ��(��)�

Normal
Distribution

1
"√2$

��(��%)& '*&⁄
1

"√2$
	 ��(��%)& '*&⁄ ��

�

�

Log-Normal
Distribution

1
"√2$

��(-. ��%)& '*&⁄ 1
"√2$

	
1
/

��(-. ��%)&

'*& ��
�

�

Anti-Gaussian
Distribution 3 �

2$�4 ��(� '5&⁄)[(��5&) �⁄]

1
√2$

6�
�7√�

5 √��√�
√�

8
&

'9
+ �'� 5⁄

∙ �
�7�√�

5 √��√�
√�

8
&

'9
:

B. Cache coherence protocol
In computer, cache coherence refers to the consistency of

data stored in local caches of a shared resource. Cache
coherence refers to the same information and the copy
subsequent memory is consistent. If a word has been
modified in the cache, it also must be modified immediately
or lastly on a higher level memory. In multi-processor,
between adjacent levels or between the same levels can
appear inconsistent data. Data inconsistency will lead to
program error eventually; the system will generate an error
or even collapse. Therefore, for any hardware architecture

now, to solve the cache coherence problem is the first
problem to solved, and in this way the system can be
guaranteed reliability.

There are many protocols to solve the cache coherence.
But so far, according to the principle of reliability, no one
can still solve the coherence problem completely. Therefore,
analyze the system reliability depending on the different
protocol model. The following introduce each protocol
model.

1) Write-Once
In cache coherence protocol, Write-Once is the first

write-invalidate protocol defined. It is Write-Back and
Write-Through comprehensive. When using this mechanism,
a cache line write back for the first time, and the same time
data is written back to cache and main memory using the
Write-Through policy, after the write operation using Write-
Back, only written back to cache and not written back to
main memory.

There are four states in each CPU to identify the current
state of cache line. Invalid indicates that the current cache
line doesn’t contain valid data, it is invalid cache line. Valid
indicates that the data of current cache is the latest, and there
is the copy of cache line in main memory. Reserved also
indicates that the data of current cache is the latest, and the
main memory has a copy data of cache line. Dirty represent
data is the latest in the cache line, and only this cache line
has the latest copy of data, doesn’t synchronize with the
main memory. Figure 1 is the Write-Once transition diagram.

Fig.1. Write-Once transition diagram. (PR-the local processor read copy

of cache; PW-the local processor write copy of cache; RB-read a valid
copy from another cache; WI-when write hit broadcast an invalid

command on the bus; RI-when write miss broadcast an invalid command
on the bus)

2) MESI
MESI (aka Illinois) is the cache coherence protocol

which is widely used to support the write back strategy. As
the name suggests, it is divided into four states. Modified,
the cache line exists only in the current cache, and is dirty
(modified), the value has been modified compared to the
main memory. Exclusive, the cache line exists only in
current cache, but it is clean (unmodified), and the value is
consistent compared to the main memory. Shared, this state
descript that cache line may be stored in other caches, and is

248248248

also clean; the value is consistent compared to the main
memory. Invalid, this state descript that cache line is invalid.

3) MOESI
In computer, MOESI is a full cache coherence protocol

that encompasses all of the possible states commonly used in
other protocols. In addition to the four common MESI
protocol states, there is a fifth Owned state representing data
that is both modified and shared.

Owned, this cache line contains the latest data copy in
current processor, and there must be a copy of the cache line
in the other CPU, states of cache line is Shared in other
CPUs. As shown in Figure 2, it is the cache coherence
model based on MOESI protocol.

Fig.2. MOESI transition diagram.

III RELIABILITY MODEL OF CACHE
In Write-Once protocol, each state will affect the whole

system; any mistake of state can lead to cache inconsistent.
These shows that are a series system [10], it is a basic
mathematical model that the problem of system reliability
can be triggered by cache coherence as shown in Figure 3.
Mathematical model for the series system is

�;(�) = �! ∙ �' ∙ �4 ⋯ �@ = A �B

@

BC!

Fig.3. Write-Once series flow chart

Where n is the system state number of composition, Ri is
the reliability of the i system state, Rs is the system reliability.
When the failure distribution of each state is exponential
distribution in Write-Once protocol, that is �B(�) = ���D� ,
and then system reliability is

�;(�) = A ���D�
E

BC!

= ���F�

The Failure Rate is the probability of system which loss
functions in the stipulated conditions and within specified

time. , and represent the parameters of
exponential distribution I, V, R and D. Each state has a
certain failure rate, the failure rate of system is

�(�) = �; = �G + �H + �I + �J = K �B

E

BC!

And the MTTF is

����; =
1
�;

=
1

∑ �B
E
BC!

In MESI protocol, Exclusive is a special case of Shared,
therefore, this shows that is a series-parallel system [10].
Mathematical model for the series-parallel system is shown
in Figure 4. In (a), the state M is recorded as RM and I is
recorded as RI, state E and state S parallel into Rp. Finally,
R1, R2 and R3 cascade into Rs as shown in Figure 4 (b).

, and represent the parameters of exponential
distribution M, E, S and I. This model can be used to express
the following formula,

�M = �N + �O − �N�O

�;(�) = �Q ∙ �M ∙ �G = �Q ∙ �G ∙ (�N + �O − �N�O)

�; = �Q + �N + �O + �G = K �B

E

BC!

Fig.4. MESI series-parallel flow chart

The probability density function is

�(�) = �;���F�

So the failure rate function of system is

�(�) =
�(�)

�;(�) =
�;��(�RS�U)�

���R� + ���U� + ��(�RS�U)�

And the MTTF is

����; = 	 �;(�)��
�

In MOESI protocol, it redefines the state Shared, the
state M is recorded as RM and I is recorded as RI, state O,
state E and state S parallel into Rp, and process similar to

249249249

Figure 4. We can also use another way in Figure 5, it is
called failure tree. When system is series, all the nodes are
connected to the OR gate. And when system is parallel, all
the nodes are connected to the AND gate.

Fig.5. MOESI failure tree

, , and represent the parameters of
exponential distribution M, O, E, S and I. This model can be
used to express the following formula,

�M = �N + �V + �O − �N�V − �N�O − �V�O + �N�V�O

�; = �Q + �N + �V + �O + �G = K �B

W

BC!

So the failure rate function is

�(�) =
�(�)

�;(�)

=
�;��(�RS�XS�U)�

���R� + ���X� + ���U� − ��(�RS�X)� − ��(�RS�U)� − ��(�XS�U)� + ��(�RS�XS�U)�

These models can analyze the reliability of different
protocols, and can optimize hardware-software co-design.

IV EXPERIMENTAL RESULT AND DISCUSSION
Reliability evaluations of cache coherence protocols help

improve system stability. For quantitative analysis of
mathematical models, is only the evaluation of protocol, and
not a specific hardware platform. We can make some
simulation calculation to assess the advantages and
disadvantages of each protocol. In this paper, digital circuit
design for the reliability analysis of cache coherence is as a
target. In Table II, there is the reliability of the three models.

The failure rate of the control logic block is usually a
fixed value: � = 0.31 × 10�\ [10]. Assuming the failure
rate of states are the same in these three cache coherence
protocols, and the failure distribution meet exponential
distribution. Based on reliability model of cache coherence,
the reliability index can be calculated.

When t is a fixed value, R (Write-Once) < R (MESI) < R (MOESI)
can be got as shown Figure 6. The reliability of MOESI is
the highest, but the reliability of MESI is the most significant
increase. In Figure 7, z (Write-Once) is fixed value, z (MESI) < z

(Write-Once), and the change trend of z (MOESI) is relatively large.
And then, the mean time to failure of the three protocols is
also increasing. Through quantitative analysis, the reliability

of MOESI is the highest that can be clearly observed.
Therefore, now the hardware architecture generally still uses
the MESI protocol.

TABLE II. THE RELIABILITY INDEX OF THREE PROTOCOLS

Protocol f(t) R(t) z(t) MTTF
Write-
Once 4���E�� ��E�� 4� 1 4�⁄

MESI 4���E�� 2��4��

− ��E��
4�

2��� − 1
5 12�⁄

MOESI 5���W��
3��4��

− 3��E��

+ ��W��

5�
3�'�� − 3��� + 1

9 20�⁄

Fig.6. The Reliability Function curve diagram

Fig.7. The Failure Rate Function curve diagram

V CONCLUSION
To establish the reliability model is helpful to the

analysis of cache coherence, and the optimal model can be
selected by mathematical simulation. In the future,
according to the hardware architecture, instruction set,
specific complier system and the software execution model,
a new cache coherence protocol can be proposed by the
reliability model in this paper. And at the same time, any
model cannot be completely reliable; failure will be able to
be repaired by Markov process. And will be design and
verification in hardware.

ACKNOWLEDGMENT
This research was supported by Research Fund for the

Doctoral Program of Higher Education of China under
Grants No.20090121110019 and National Natural Science

250250250

Foundation of China (General Program) under Grants No.
61274133

REFERENCES
[1] Hemayet Hossain, Sandhya Dwarkadas, and Michael C. Huang,

“Coherence Protocol Optimization for both Private and Shared Data,”
Parallel Architectures and Compilation Techniques (PACT), 2011
international Conference, Galveston, pp. 45-55.

[2] Alberto Ros, Manue E. Acacio, and José M. García, “A Direct
Coherence Protocol for Many-Core Chip Multiprocessors,” IEEE
Transactions on Parallel and Distributed Systems, vol. 21, no. 12, pp.
1779-1792, December 2010.

[3] Marzieh Lenjani, and Mahmoud Reza Hashemi, “Tree- based scheme
for reducing shared cache miss rate leveraging regional, statistical
and temporal similarities,” IET Computers & Digital Techniques, vol.
8, no.1, pp. 30-48, 2014.

[4] D. Yun, S. Kim, and S. Ha, “A Parallel Simulation Technique for
Multicore Embedded Systems and Its Performance Analysis,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 31, no. 1, January 2012.

[5] Santosh Nagarakatte, Milo M. K. Martion, and Steve Zdancewic,
“Hardware for Safe and Secure Manual Memory Management and
Full Memory Safety,” In the Proceedings of the 39th International
Symposium on Computer Architecture (ISCA 2012), pp. 189-200.

[6] Azzam Haidar, Stanimire Tomov, and Jack Dongarra, “A novel
hybrid CPU-GPU generalized eigensolver for electronic structure
calculations based on fine grained memory aware tasks,”
International Journal of High Performance Computing Applications,
August 2013.

[7] Mario Lodde, Jose Flich, and Manuel E. Acacio, “Heterogeneous
Noc Design for Efficient Broadcast-based Coherence Protocol
Support,” 2012 Sixth IEEE/ACM International Symposium on
Networks-on-Chip, pp. 59-66

[8] Xiaolin Teng, Hoang Pham, and Daniel R. Jeske, “Reliability
Modeling of Hardware and Software Interactions, and Its
Applications,” IEEE Transactions on Reliability, vol. 55, no. 4, pp.
571-577, December 2006.

[9] Xi E. Chen, and Tor M. Aamodt, “Modeling Cache Contention and
Throughput of Multiprogrammed Manycore Processors,” IEEE
Transactions on Computers, vol. 61, no. 7, pp. 913-927, July 2012.

[10] Marvin Rausand, “System Reliability Theory: Models, Statistical
Methods, and Applocations, 2ND Edition,” 2004.

251251251

