
MPI Based Cluster Computing for Performance
Evaluation of Parallel Applications

Nanjesh B R

Department of Computer Science and Engineering

Adichunchanagiri Institute of Technology
Chikmagalur, Karnataka, INDIA

nanjeshbr@gmail.com

Madhu C K
Department of Computer Science and Engineering

Adichunchanagiri Institute of Technology
Chikmagalur, Karnataka, INDIA

madhu9587@gmail.com

Vinay Kumar K S

Department of Computer Science and Engineering

Adichunchanagiri Institute of Technology
Chikmagalur, Karnataka, INDIA

vinayks109@gmail.com

Hareesh Kumar G

Department of Computer Science and Engineering

Adichunchanagiri Institute of Technology
Chikmagalur, Karnataka, INDIA
hareeshkumarg21@gmail.com

Abstract— Parallel computing operates on the principle that

large problems can often be divided into smaller ones, which are

then solved concurrently to save time (wall clock time) by taking

advantage of non-local resources and overcoming memory

constraints. The main aim is to form a cluster oriented parallel

computing architecture for MPI based applications which

demonstrates the performance gain and losses achieved through

parallel processing using MPI. This can be realized by

implementing the parallel applications like parallel merge

sorting, using MPI. The architecture for demonstrating MPI

based parallel applications works on the Master-Slave computing

paradigm. The master will monitor the progress and be able to

report the time taken to solve the problem, taking into account

the time spent in breaking the problem into sub-tasks and

combining the results along with the communication delays. The

slaves are capable of accepting sub problems from the master

and finding the solution and sending back to the master. We aim

to evaluate these statistics of parallel execution and do

comparison with the time taken to solve the same problem in

serial execution to demonstrate communication overhead

involved in parallel computation. The results with runs on

different number of nodes are compared to evaluate the

efficiency of MPI based parallel applications. We also show the

performance dependency of parallel and serial computation, on

RAM.

Keywords—Parallel Execution, Cluster Computing, Symmetric

Multi-Processor (SMP), MPI (Message Passing Interface), RAM

(Random Access Memory).

I. INTRODUCTION

Merge sort is an efficient divide-and-conquer sorting
algorithm. Because merge sort is easier to understand than
other useful divide-and-conquer methods. One common
example of parallel processing is the implementation of the
merge sort within a parallel processing environment. This
paper deals how to handle merge sort problem that can be split
into sub-problems and each sub-problem can be solved
simultaneously. With computers being networked today, it has
become possible to share resources like files, printers,
scanners, fax machines, email servers, etc. One such resource
that can be shared but is generally not, is the CPU. Today's
processors are highly advanced and very fast, capable of
thousands of operations per second. If this computing power is
used collaboratively to solve bigger problems, the time taken
to solve the problem can reduce drastically. However the

whole operation of parallel processing also depends on the
RAM available to the processors for their computation.

A. Existing Frameworks

1) MPI: The specification of the Message Passing
Interface (MPI) standard 1.0 [9] was Completed in April of
1994. This was the result of a community effort to try and
define Both the syntax and semantics of a core message-
passing library that would be useful to a Wide range of users
and implemented on a wide range of Massively Parallel
Processor (MPP) platforms.

2) MPI2: All major computer vendors supported the MPI
standard and work began on MPI-2, where new functionality,
dynamic process management, one-sided communication,
cooperative I/O, C++ bindings, Fortran 90 additions, extended
collective operations, and miscellaneous other functionality
were added to the MPI-1 standard [9]. MPI-1.2 and MPI-2
were released at the same time in July of 1997. The main
advantage of establishing a message-passing standard is
portability.

3) Openmp: It has emerged as the standard for shared-
memory parallel programming. The openmp application
program interface (API) provides programmers with a simple
way to develop parallel application for shared memory
parallel computing.

4) MPICH2: An all-new implementation of MPI designed
to support both MPI-1 and MPI-2. In MPICH2, the collective
routines are significantly faster and has very low
communication overhead than the “classic” MPI and MPICH
versions [10].

B. Framework Used in the Proposed System

This paper deals with the implementation of parallel
application such as parallel merge sorting under MPI using
MPICH2 for communication between the cores and for the
computation. Because it is very much suitable to implement in
LINUX systems.

II. RELATED WORKS

Traditionally, multiple processors were provided within a
specially designed "parallel computer"; along these lines,
Linux now supports SMP Pentium systems in which multiple
processors share a single memory and bus interface within a

Proceedings of 2013 IEEE Conference on Information and Communication Technologies (ICT 2013)

978-1-4673-5758-6/13/$31.00 © 2013 IEEE 1123

single computer. It is also possible for a group of computers
(for example, a group of PCs each running Linux) to be
interconnected by a network to form a parallel-processing
cluster [8]. Amit Chhabra, Gurvinder Singh [1] proposed
Cluster based parallel computing framework which is based
on the Master-Slave computing paradigm and it emulates the
parallel computing environment. Alaa Ismail El-Nashar [2]
used the dual core Window-based platform to study the effect
of parallel processes number and also the number of cores on
the performance of three MPI parallel implementations for
some sorting algorithms. Husain Ullah Khan, Rajesh Tiwari
[3] estimated the performance and speedup of parallel merge
sort algorithm. An adaptive framework towards analyzing the
parallel merge sort is prposed by Husain Ullah Khan, Rajesh
Tiwari [4]. Kalim Qureshi [5] presented the practical
performance comparison of parallel sorting algorithms on
homogeneous network of workstations. Atanas Radenski [6]
implemented the shared memory, message passing, and hybrid
merge sorts for standalone and clustered SMPs. Manwade K.
B [7] conducted analysis of Parallel Merge Sort Algorithm
and evaluated the performance of parallel merge sort
algorithm on loosely coupled architecture and compared it
with theoretical analysis. It has been found that there is no
major difference between theoretical performance analysis
and the actual result. We aim to present an architecture using
MPI that demonstrates the performance gain and losses
achieved through parallel processing. And also demonstrates
the performance dependency of parallel applications on RAM.

III. SYSTEM REQUIREMENT

A. Hardware Requirements

• Processor: Pentium D (3 G Hz)

• Two RAM: 256MB and 1GB

• Hard Disk Free Space: 5 GB

• Network : TCP/IP LAN

B. Software Requirements

• Operating System : Linux

• Version: Fedora Core 14

• Compiler: GCC

• Network protocol: Secure Shell

• Communication protocol: MPI

IV. SYSTEM DESIGN

A. System Analysis

The system is to designed such that it demonstrates the
performance dependency of parallel and serial execution on
RAM and also it demonstrates the following:

• How a client can submit the entire problem to a
master and collects the solution back from it without
bothering about how it has been solved.

• How the master detects the available slaves on the
network, and how it detects the system load on that
machine to determine whether it is worth sending a
task to that particular client.

• How a problem can be submitted to the slaves.

• How the solutions of the given problem can be
retrieved from the slave.

• How the slaves solve the given problem.
The design was made modular i.e. the software is logically

partitioned into components that perform specific functions
and sub-functions.

1) Master is designed such that it has functionality to
manage connection and communication with the slave, it
scans and identifies all the cores or slaves available on the
node here it is only one slave to be identified. It then assigns
the processor ranks to identify the cores. The master assigns
the problem to slave. It also has to accept the results sent back
by the slave after they finish the computation of the sub-tasks
assigned to them. Then the received result has to be assembled
in the right order to obtain the solution for the main problem.

2) Slave: This is designed to have the functionality to read
the problem (in case of single slave)/sub-problem sent by the
master, evaluate the problem (in case of single slave)/sub-
problem and send the result back to the master.

B. Cluster Based Parallel Computing architecture

The main problem is taken by the master core and assigns
the task into slave cores. Each slave core send back the
solutions of the assigned sub problem. The working principle
involved in this architecture is shown in Fig.1 and Fig.2 shows
the cluster based parallel computing architecture.

Fig 1. Operations involved in cluster based parallel computing architecture

C. MPI Configuration

Download the mpich-2 package and type the following
commands in the terminal to install.
Unpack the tar file and go to the top level directory:
tarxzf mpich2-1.3.2.tar.gz
cd mpich2-1.3.2
Configure MPICH2 specifying the installation directory:
./configure --prefix=/home/<USERNAME>/mpich2-install |&
tee c.txt
Build MPICH2:make 2>&1 | tee m.txt
Install the MPICH2 commands:
Make install 2>&1 | tee mi.txt
Add the bin subdirectory of the installation directory to your
path in your startup script (.bashrc for bash, .cshrc for csh):
PATH=/home/<USERNAME>/mpich2-install/bin:$PATH;
export PATH.

D. SSH Configuration for remote login

SSH is a program that runs on your personal computer
(e.g. PC, Macintosh, or UNIX workstation) and is used to
login to a remote computer system. The steps to configure

Proceedings of 2013 IEEE Conference on Information and Communication Technologies (ICT 2013)

978-1-4673-5758-6/13/$31.00 © 2013 IEEE 1124

SSH are as follows. The first thing we'll do is simply connect
to a remote machine. This is accomplished by running 'ssh
hostname' on your local machine. Here the hostname that
you supply as an argument is the hostname of the remote
machine that you want to connect to. By default ssh will
assume that you want to authenticate as the same user you use
on your local machine.The first time around it will ask you if
you wish to add the remote host to a list of known hosts, go
ahead and say yes.
1) Generating a Key: Once you're back to your local
computer's command prompt enters the command 'ssh-keygen
-t dsa'. It will prompt you for the location of the key file.
Unless you have already created a key file in the default
location, you can accept the default by pre
ssing 'enter'. Next it will ask you for a passphrase and ask you
to confirm it.
2) Installing Public Key: If you do not have the ssh-copy-id
program available, then you must use this manual method for
installing your ssh key on the remote host. Copy your public
key which is in ~/.ssh/id_dsa.pub to the remote machine using
the scp command.

Syntax: scp id_dsa.pub hostname:~/.ssh/authorized_keys.
It will ask you for your system password on the remote
machine and after authenticating it will transfer the file. You
may have to create the .ssh directory in your home directory
on the remote machine first. scp is a file transfer program that
uses ssh.
3) Using the ssh-agent Program: The true usefulness of using
key based authentication comes in the use of the ssh-agent
program. you can use the ssh-add program to add your
passphrase one time to the agent and the agent will in turn
pass this authentication information automatically every time
you need to use your passphrase. So the next time you run: ssh
username@hostname. You will be logged in automatically
without having to enter a passphrase or password. Once
you've verified that ssh-agent is running, you can add your ssh
key to it by running the ssh-add command: ssh-addIf the
program finds the DSA key that you created above, it will
prompt you for the passphrase. Once you have done so it
should tell you that it has added your identity to the ssh-agent:
/home/username/.ssh/id_dsa (/home/username/.ssh/id_dsa).

V. IMPLEMENTATION

Implementation is the most crucial stage in achieving a
successful parallel system. The problem to be solved has to be
parallelized so that computation time is reduced. The
architecture consists of a client, a master core, capable of
handling requests from the client, and slave, capable of
accepting problems from the master and sending the solution
back. The architecture consists of a client, a master core,
capable of handling requests from the client, and slave,
capable of accepting problems from the master and sending
the solution back. The master and the slave communicate with
each other using MPICH2 under MPI. The problem has to be
divided such that the communication between the master and
the slaves is minimum. The total computational time to solve
the problem completely is effected by the communication time
between the nodes.

A. Parallel Merge Sorting Design

The algorithm which we have implemented is for merge
sorting on several nodes, it may be for only one or more

slaves. One of the cores is designated as a master and
remaining acts as slaves.

Fig.2. Flow diagram for merge sorting on several nodes

The unsorted list of elements is obtained with randomized

method. The master divides the unsorted list of elements into
the data parts equal to the number of slaves. Then slaves use
the sequential version of merge sort to sort their own data. The
sorted sub-lists are sent to the master. Finally, the master
merges all the sorted sub-lists into one sorted list. Fig.2 shows
the flow of operations involved in parallel merge sorting. The
outline for the implementation of merge sort is shown in
Fig.3. Hence we need to implement parallel systems
consisting of set of independent desktop PCs interconnected
by fast LAN cooperatively working together as a single
integrated computing resource so as to provide higher
availability, reliability and scalability. The cluster based
parallel computing architecture is as shown in the Fig.4. But
to show the performance dependency on RAM we are
considering only single node with two cores, one act as master
and other as slave. So there will be no division of problem,
instead entire unsorted list is submitted to the single available
slave.

 Fig.3. Merge sort implementation outline

/* Merge Sort */

1. merge_sort(sub-list[], start, last)

2. { Allocate spaces for "sublist1" and "sub-list2" of

size

 (last-start)/2 each;

3. mid = (first+last)/2;

4. lcount = mid - first + 1;

5. ucount = last - mid;

6. if (last == first) { return};

7. else {

8. sub-list1=merge_sort(sub-list[], first,

mid);

9. sublist2=merge_sort(sub-list[], mid+1,

last);

10. merge(sublist1, lcount, sublist2,ucount);

11. }

12. }

Proceedings of 2013 IEEE Conference on Information and Communication Technologies (ICT 2013)

978-1-4673-5758-6/13/$31.00 © 2013 IEEE 1125

Fig 4. Cluster based parallel computing architecture

TABLE I

PERFORMANCE DEPENDENCY ON RAM

TABLE II

PERFORMANCE FOR SMALLER UNSORTED LIST OF ELEMENTS

Type Of
Execution

Number of
nodes

10000

20000

30000

40000

50000

Parallel using
MPI at 256
MB RAM

Two
0.13521
seconds

1.57364
seconds

2.39516
seconds

3.23421
seconds

4.91722
seconds

Three
0.14136
seconds

1.91452
seconds

2.98153
seconds

3.71349
seconds

5.54262
seconds

TABLE III

PERFORMANCE FOR LARGER UNSORTED LIST OF ELEMENTS

Type of
Execution

RAM size

10000

20000

300000

4000000

5000000

Serial

256 MB
0.00062
seconds

0.00091
seconds

0.00264
seconds

3.22311
seconds

5.56543
seconds

1000 MB
0.00061
seconds

0.00093
seconds

0.00261
seconds

3.21631
seconds

5.58412
seconds

Parallel using
MPI

256 MB
0.25621
seconds

5.42741
seconds

14.0342
seconds

40.74265
3seconds

126.27217
seconds

1000 MB
0.11321
seconds

0.44631
seconds

1.78462
seconds

6.64854
seconds

10.06431
seconds

Type of
execution

Number of
nodes

1000000

2000000

3000000

4000000

5000000

Parallel with
MPI at 256
MB RAM

Two
1.05426
seconds

1.84810
seconds

2.31324
seconds

2.81328
seconds

4.71486
seconds

Three
0.78216
seconds

1.64632
seconds

2..04327
seconds

2.17449
seconds

3.81042
seconds

Proceedings of 2013 IEEE Conference on Information and Communication Technologies (ICT 2013)

978-1-4673-5758-6/13/$31.00 © 2013 IEEE 1126

VI. RESULTS AND ANALYSIS

We have analyzed the performance of parallel method
against traditional serial method. The results are tabulated and
compared. We calculated the time for sorting the unordered
list of elements using both serial merge sorting and a case of
parallel merge algorithm using MPI. Analysis can be made
under four different cases.

Case 1: Single node analysis to show performance

dependency on RAM. Table I shows that performance of
serial execution almost remains same even after the increase
in RAM size. There are negligible computation time
variations for increase in RAM size. This is because the Serial
execution is performed by the cores itself with negligible
RAM usage and also due to the no communication involved
between cores. Hence it is independent of RAM. We can also
conclude that performance of parallel execution increases
when there is increase in RAM size. It shows drastic decrease
in computation time with the increase in RAM. Because
parallel execution often uses RAM for the communication
between cores and also it involves lot of send and receive
operations and temporarily storing the result of problem
assigned to cores. We can analyze that higher the size of
unordered list the time difference is very high in the table,
because higher the input size, more will be sends and receives
resulting in the need of higher utilization of RAM. So for
smaller RAM the computation time will be more and larger
the RAM size computation time will be less in parallel
execution finally resulting in better performance. However by
seeing the time results for larger inputs such as 4000000 and
5000000, there is a large reduction in computation time when
there is increase in RAM size.

Case 2: Single node analysis to show communication

overhead involved in parallel computations. Generally we
can say parallel execution is faster than the serial execution
but the results of serial execution with 1000MB RAM and
parallel execution using MPI with 1000MB RAM shown in
the Table I depicts that serial execution is faster than parallel
execution in a single node having two cores, for different sizes
of matrices.

Fig.5. Result of merge sorting the unsorted list containing 1000000 elements

This is due to the communication overhead involved in the
parallel execution but this can be overcome by increasing the
number of nodes. Overheads that are considered are the
connection time required to connect to slave, time taken to
send the problem along with inputs to slave time taken to

retrieve the solutions from the client, time taken to assimilate
the results obtained. Fig.5 shows the example of the result
obtained for parallel merge sorting.

Case 3: Multiple nodes analysis with smaller unsorted

list of elements (computation time < communication time).
Table II shows the time taken to solve the problem wholly is

more when the number of nodes is more for smaller unordered
list of elements. Because the problem has to be communicated
among all the slave cores hence the communication time is
larger than the computation time. So the 2 nodes can compute
it and assemble it faster than a 3 node or a 4 node system.

Case 4: Multiple nodes analysis with larger unsorted

list of elements (computation time > communication time).

Table III shows that for larger unordered list of elements, the
performance of the system increases phenomenally with
increase in number of nodes. As the size of the input increases
the computation time also increases. The computation time is
so large that the communication time is negligible compared
to it.

VII. CONCLUSIONS

We presented a model that demonstrates the performance
gain and losses achieved through parallel processing. We also
presented a model that demonstrated the evaluation of the
performance dependency of parallel MPI based applications
and its serial version on RAM showing Serial computation
involves negligible RAM and parallel computation utilizes
more RAM especially for larger inputs. Serial execution is
faster for smaller input size because of the communication and
connection overheads in parallel execution. The performance
of parallel execution is far greater compared to serial
execution when the size of the input is very large. The total
time taken to compute the result decreases drastically when
the number of nodes increases.

VIII. FUTURE WORKS

Even though the method that has been used here can be
deployed to solve larger order problems, it is cumbersome to
give the data input for the larger unordered list of elements.
Hence this work can be extended to give input from files for
larger list of unsorted elements. It can also be extended to
solve other similar problems such as matrix parallel
multiplication, finding the determinant and other backtracking
problems. The analysis is also useful for making a proper
recommendation to select the best algorithm related to a
particular parallel application. If the nodes are extended, node
failure can be a problem that has to be tackled.

 REFERENCES

[1] Amit Chhabra, Gurvinder Singh "A Cluster Based Parallel Computing
Framework (CBPCF) for Performance Evaluation of
ParallelApplications", International Journals of Computer Theory and
Engineering, Vol. 2, No. 2 April, 2010.

[2] Alaa Ismail El-Nashar, “Parallel Performance of MPI Sorting
Algorithms on Dual Core Processor Windows-Based Systems”,
International Journal of Distributed and Parallel Systems (IJDPS) Vol.2,
No.3, May 2011.

[3] Husain Ullah Khan, Rajesh Tiwari, ”An Adaptive Environment To
Evaluate The Performance Of Parallel Merge Sort”, International
Journal of Engineering Research & Technology (IJERT), Vol. 1 Issue 8,
October – 2012.

[4] Husain Ullah Khan, Rajesh Tiwari, “An Adaptive Framework towards
Analyzing the Parallel Merge Sort”, International Journal of Science and
Research (IJSR), Volume 1 Issue 2, November 2012.

[5] Kalim Qureshi, “A Practical Performance Comparison of Parallel
Sorting Algorithms on Homogeneous Network of Workstations”, TELE-

Proceedings of 2013 IEEE Conference on Information and Communication Technologies (ICT 2013)

978-1-4673-5758-6/13/$31.00 © 2013 IEEE 1127

INFO'06 Proceedings of the 5th WSEAS international conference on
Telecommunications and informatics, Pages 276-280, 2006.

[6] Atanas Radenski, “Shared Memory, Message Passing, and Hybrid
Merge Sorts for Standalone and Clustered SMPs”, The 2011
Interanational Conference on Parallel and Distributed Processing
Techniques and Applications,pp. 367-373, 2011.

[7] Manwade K. B, “Analysis of Parallel Merge Sort Algorithm”, 2010
International Journal of Computer Applications (0975 - 8887) Volume 1
– No. 19 66, 2010.

[8] A. Nazir, H. Liu, and S.-A. Sørensen, “On-demand resource allocation
policies for computational steering support in grids, ” in
International Conference on High Performance Computing, Network
and Communication Systems, Orlando, USA, 2007.

[9] Message Passing Interface, MPI Standard: http://www.mpi-form.org.
[10] MPICH2: A New Start for MPI Implementations, Recent Advances in

Parallel Virtual Machine and Message Passing Interface, Lecture Notes
in Computer Science, Volume 2474, 2002, p 7.

Proceedings of 2013 IEEE Conference on Information and Communication Technologies (ICT 2013)

978-1-4673-5758-6/13/$31.00 © 2013 IEEE 1128

