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Abstract—The aim of this paper is to propose a second order
sliding mode controller for a brake system. The main objective of
the controller is to induce anti-lock feature by means of tracking
the slip rate of the wheel, ensuring a shorter distance in the
braking process and improving the vehicle safety. The closed-
loop system is robust in presence of external disturbances and
parameter variations. To show the performance of the proposed
design, a simulation study is carried on, where results show good
performance of the antilock-brake system.

I. INTRODUCTION

The ABS control problem consists of imposing a desired

vehicle motion and as a consequence, provides adequate

vehicle stability. The main difficulties arising in the brake

and active suspension control design are high non-linearities,

uncertainties caused by external perturbations and parameter

variations which are unknown. Therefore, the ABS has

become an attractive research area in nonlinear systems control

framework.

On the other hand, sliding mode approaches have been

widely used for the problems of dynamic systems control

and observation due to their characteristics of finite time

convergence, robustness to uncertainties and insensitivity to

external bounded disturbances [1], [2]. Then, sliding mode

control emerges as an very interesting alternative for ABS

design. Several researchers have dealt with the issue of

designing sliding-mode controllers for the ABS application are

[3], [4], [5], [6], including the problem of extremum seeking

[7].

In this work, our purpose is to discuss an ABS based

on sliding mode using a simple model, regarding external

disturbances and parameter variations. Similar methods has

been treated previously in the above works. Subsequently, a

relative degree one sliding surface is proposed; and, the for

induce sliding mode dynamics, the use of a recent variation

of the Super-Twisting Algorithm [8], a Lyapunov design of

adaptive Super-Twisting Algorithm (ASTW) [9], is proposed,

with adaptation rule based on the Lyapunov approaches

presented in [10] and [11]. This control law provides finite

time convergence to a bounded second order sliding set with

reduction of chattering effect.

Note that the sliding modes techniques are based on the

idea of the sliding manifold, that is an integral manifold with

finite reaching time [12]. This manifold can be implemented

by different methods including use of discontinuous function

or continuous with discontinuous derivatives (so called

higher order sliding modes). Let us note, that this issue of

implementation, as demonstrated clearly by Utkin in [13] and

earlier works is computational and depends on the system

behavior in the boundary layer of the sliding manifold. Thus,

the main difficulty and innovations in continuous-time sliding

mode research is in the choice of the manifold rather than in

the reaching phase that belongs more to numerical issue.

Indeed, once the sliding manifold σ(x) = 0 is chosen, the

derivatives σ(k) of the function σ along the system trajectories

can be expressed as function of control that has exactly same

dimension as σ. Practically in all cases the sliding control is

implemented via digital computers, so, discrete-time sliding

mode is used, which is a version of a deadbeat control that

makes σ to converge to zero in finite time. Let us note, that

this algorithm can be dynamic, i.e. include past values of σ(tk)
and in continuous-time will look as integrals of a function of

σ.

In the following, in Section II a mathematical model of the

brake system is presented. In Section III an ABS controller

design based over the ASTW method is proposed. An example

of the proposed controller is presented in Section IV. Finally,

the Section V presents the conclusions of the current propose.

II. MODEL

In this section, the dynamic model of a vehicle is shown.

Here we use a quarter of vehicle model, this model considers

the pneumatic brake system, the wheel motion and the vehicle

motion. We study the task of controlling the wheels rotation,

such that, the longitudinal force due to the contact of the wheel

with the road, is near from the maximum value in the period

of time valid for the model. This effect is reached as a result

of the ABS valve throttling. In this work we only consider the

braking stage.

A. Pneumatic Brake System Equations

The specific configuration of this system considers brake

disks, which hold the wheels, as a result of the increment of

the air pressure in the brake cylinder, Fig. 1. The entrance

of the air trough the pipes from the central reservoir and

the expulsion from the brake cylinder to the atmosphere is

regulated by a common valve. This valve allows only one

pipe to be open, when 1 is open 2 is closed and vice versa.
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The time response of the valve is considered small, compared

with the time constant of the pneumatic system.

Let us consider Fig. 1, we suppose the brake torque Tb is

proportional to the pressure Pb in the brake cylinder

Tb = kbPb (1)

with kb > 0. For the brake system we use an approximated

model of pressure changes in the brake cylinder due to the

opening of the valve with a first order relation [14], this

relation can be represented as

τṖb + Pb = Pcu (2)

where τ is the time constant of the pipelines, Pc is the pressure
inside the central reservoir, u is the valve input signal. Besides,

the atmospheric pressure Pa is considered equal to zero.

Central
reservoir

Pc

Valve

❄
Caliper
assembly

✛

Brake
pads

❄ ❄

Pa

✻ Pb

�✒

Disk ✲

Wheel
bearing

✛

Wheel
stud

✛

Hub

✻

Fig. 1. Pneumatic brake scheme

B. Wheel Motion Equations

To describe the wheels motion we will use a partial

mathematical model of the dynamic system as is done in [15],

[16], [17] and [18].

Consider Fig. 2, the dynamics of the angular momentum

change relative to the rotation axis are given by

Jω̇ = rf (s)−Bbω − Tb (3)

where ω is the wheel angular velocity, J is the wheel inertia

moment, r is the wheel radius, Bb is a viscous friction

coefficient due to wheel bearings and f(s) is the contact force
of the wheel.

b

Nm = mg

f(s) = µNmφ (s)

v

Tb ω

Fig. 2. Wheel forces and torques

The expression for longitudinal component of the contact

force in the motion plane is

f (s) = µfmφ (s) (4)

where µ is the nominal friction coefficient between the wheel

and the road, fm is the normal reaction force in the wheel

fm = mg

with m equal to the mass supported by the wheel and g
is the gravity acceleration. The function φ(s) represents a

friction/slip characteristic relation between the tyre and road

surface. Here, we use the Pacejka model [19], defined as

follows

φ (s) = D sin (C arctan (Bs− E (Bs− arctan (Bs)))) (5)

in general, this model produces a good approximation of the

tyre/road friction interface. With the following parametersB =
10, C = 1.9, D = 1 and E = 0.97 that function represents

the friction relation under a dry surface condition. A plot of

this function is shown in Fig. 3

0 0.2 0.4 0.6 0.8 1 1.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

s

φ
(s

)

Fig. 3. Characteristic function φ (s)

The slip rate s is defined as

s =
v − rω

v
(6)

where v is the longitudinal velocity of the wheel mass centre.

The equations (1)-(6) characterize the wheel motion.

C. The Vehicle Motion Equation

The vehicle longitudinal dynamics without lateral motion

considered are represented as

Mv̇ = −F (s)− Fa (7)

where M is the vehicle mass; Fa is the aerodynamic drag

force, which is proportional to the vehicle velocity and is

defined as

Fa =
1

2
ρCdAf (v + vw)

2
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where ρ is the air density, Cd is the aerodynamic coefficient,

Af is the frontal area of vehicle, vw is the wind velocity; the

contact force of the vehicle F (s) is modelled of the form

F (s) = µφ (s) fM

where fM is the normal reaction force of the vehicle, fM =
Mg with M equal to the vehicle mass.

The dynamic equations of the whole system (1)-(7) can be

rewritten using the state variables

x = [x1, x2, x3]
T
= [ω, Pb, v]

T

with initial conditions x0 = x(0) results the following form:

ẋ1 =− a0x1 + a1f (s)− a2x2

ẋ2 =− a3x2 + bu (8)

ẋ3 =− a4F (s)− fw(x3)

with output

y = s = h(x) = 1− r
x1
x3

where a0 = Bb/J , a1 = r/J , a2 = kb/J , a3 = 1/τ , a4 =
1/M , b = Pc/τ and fw(x3) =

1
2M (ρCdAf ) (x3 + vw)

2
.

III. SLIDING MODE CONTROLLER FOR ABS

Given s∗ as the desired value of the relative slip s, which
must maximize the function φ(s), the considered problem is

to design a controller that obtains reference tracking in despite

of the perturbations in the system. As a solution, we propose

a sliding mode controller based on the ASTW for system (8).

Throughout the development of the controller, we will

assume that all the state variables are available for

measurement.

A. Control Design

Let s∗ be the desired value for the slip s, taking into account
the direct action of the pressure Pb in the brake cylinder over

the wheels motion, we define the output tracking error as

e , x1 −
1− s∗

r
x3, (9)

and the manifold

σ , ė + λe, (10)

where λ > 0.
Hence, from (8) and (10) the derivative of σ is

σ̇ =
∂σ

∂t
+
∂σ

∂x
ẋ+

∂σ

∂x
b̄u (11)

where b̄ = [0 b 0]T .
Defining, ϕ(t,x) = ∂σ

∂t
+ ∂σ

∂x
ẋ, ψ(t,x) = ∂σ

∂x
b̄ and under

the assumptions:

A1 The function ψ(t,x) ∈ R is presented as

ψ(t,x) = ψ0(t,x) + ∆ψ(t,x) (12)

where the nominal part ψ0(t,x) is a known function and

∆ψ(t,x) is a bounded disturbance so that

|∆ψ(t,x)|
ψ0(t,x)

= γ(t,x) ≤ γ̂ < 1

for all x and t > 0, with γ̂ unknown.

A2 The function ϕ(t,x) ∈ R is presented as

ϕ(t,x) = ϕ1(t,x) + ϕ2(t,x) (13)

with bounded terms

|ϕ1(t,x)| ≤ δ1|σ|
1

2 and |ϕ̇2(t,x)| ≤ δ2

where 0 < δ1, δ2 <∞ are unknown.

The following control law is proposed:

u = u1 + u2 (14)

where u1 = −α|σ| 12 sign(σ), u̇2 = −β
2 sign(σ) and the

adaptation rule for the gains α(σ, σ̇, t), β(σ, σ̇, t) is [9]:

α̇ =

{

ω1

√

γ1
2 sign (|σ| − µ) , if α > 0

0, if α = 0
(15)

β = 2ǫα (16)

where ǫ, γ1, ω1 and µ are positive constants.

Remark 1. We only consider the braking stage, then the value

for α tends to zero when the car comes to stop. For this

reason we have to put a suitable initial condition different

of zero for α in the simulation case. However, for real time

implementation when we use the adaptive gains we have an

extra advantage because we can manage the control effort.

B. Stability Analysis

The stability of (8) closed loop by (14) is outlined in a step

by step procedure:

Step A) Reaching phase of the projection motion (11) closed

loop by (14);

Step B) Sliding mode stability of (9); and

Step C) Stability of the zero dynamics x3.
Step A): From the equations (11) and (13), follows that

σ̇ = ϕ(t,x) + g(t,x)ξ (17)

where g(t,x) = 1 + ∆b(t,x)
ψ0(t,x)

and ξ = ψ0(t,x)u. The closed

loop system can be written as:

σ̇ =− αg(t,x)|σ| 12 sign(σ) + ξ̄ + ϕ1(t,x) (18)

˙̄ξ =− βg(t,x)

2
sign(σ) + ϕ̇2(t,x) + ġ(t,x)u2

with ξ̄ = ϕ2 + g(t,x)u2 and ξ̄(0) = 0.
Under the assumptions A1 and A2, for the system (18) a

real 2-sliding mode [8] is established in finite time [9], i.e.

|σ| < η1 and |σ̇| < η2, where η1 ≥ µ, η2 > 0.
Step B): The sliding mode dynamics is given by:

ė = −λe+ δ̄ (19)
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where δ̄ is a bounded term, |δ̄| < δ with δ ∈ R, due to the

error the sliding surface σ, which is bounded by η1.

Finally, it is clear that the error e converges exponentially

to the vicinity |e| < δ
λ
.

Step C) Note that during braking process x3 > 0 and with

|e| < δ
λ
due to the control action, the zero dynamics becomes

ẋ3 = −a4F (s∗)− fw (x3) . (20)

From the mechanics of the vehicle, the term fw (x3) can be

assumed bounded |fw (x3)| ≤ ς . In addition, a4F (s∗) ≫ ς .
Therefore, let ρ = a4F (s∗) − ς , ρ > 0. Let V = 1

2x
2
3, then

V̇ = −x3 [a4F (s∗) + fw (x3)] < −ρx3.
Hence, V̇ < −ρ0

√
V , where ρ0 = ρ

√
2. Therefore, x3 = 0

in finite time. Also, from (9), x1 = 0 in finite time.

IV. SIMULATION CASE

To show the effectiveness of the proposed control law,

simulations have been carried out on the wheel model design

example, the system parameters used are listed in Table 1.

TABLE 1
Values of Parameters (MKS Units)

Parameter Value Parameter Value

Af 6.6 vw -6

Pc 8 v 0.5

M 1800 B 10

J 18.9 C 1.9

r 0.3 D 1

m 450 E 0.97

ρ 1.225 g 9.81

Cd 0.65 Bb 0.08

In order to maximize the friction force, we suppose that slip

tracks a constant signal during the simulations

s∗ = 0.203

which produces a value close to the maximum of the function

φ(s).

The parameters used in the control law are ǫ = 0.3, γ1 = 3,
ω1 = 0.5, µ = 30 and λ = 100.

On the other hand, to show robustness property of the

control algorithm in presence of parametric variations we

introduce a change of the friction coefficient ν which produces

different contact forces, namely F and F̂ . Then, ν = 0.5 for

t < 1 s, ν = 0.52 for t ∈ [1, 2.5) s, and ν = 0.5 for t ≥ 2.5
s. Notice that just the nominal values were considered in the

control design.

The error variable e is shown in Fig. 4. Here, it can be

noted the very quick response of the ABS controller and

its robustness in presence of the perturbation given by the

variation of ν
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Fig. 4. Error variable e

In Fig. 5 (a) the slip performance trough the simulation is

shown, (b) shows a zoom of the transient
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Fig. 5. Slip performance s

The finite time convergence to zero of the wheel velocity

x1 (dashed) and the vehicle velocity x3 (solid) is shown in

Fig. 6
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Fig. 6. Wheel velocity x1 (dashed) and vehicle velocity x3 (solid)
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Figure 7 shows the control signal
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Fig. 7. Control signal u

Finally, Fig. 8 shows the parameter α. The decreasing trend

of the adaptive gain is due to control effort needed as the

vehicle is stopping
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V. CONCLUSIONS

In this work an adaptive second order sliding mode control

for ABS has been proposed. The simulation results show

good performance and robustness of the closed-loop system

in presence of both the matched and unmatched perturbations,

namely, parametric variations and neglected dynamics. We

only consider the braking stage, then the value for α tends

to zero when the car comes to stop. The use of adaptive gains

provides an extra advantage because it can manage the control

effort.
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