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Abstract A multivariate binary distribution that incorporates the correlation
between individual variables is considered. The availability of auxiliary information
taking the form of simple ordering constraints on their expected values is assumed.
The problem of constructing constraint-preserving estimates for expectations is for-
mulated as conditional maximization of convex likelihood function for corresponding
multinomial distribution with suitably chosen restrictions. Starting values for convex
optimization algorithms are proposed. The proposed estimator is consistent under mild
assumptions.

Keywords Binomial parameter · Inequality constraints · Maximum likelihood

Mathematics Subject Classification (2000) 62F30

1 Introduction

The problem of estimating ordered probabilities has already been studied for more
than fifty years. Ayer et al. (1955) considered estimators for a sequence of binomial
parameters known to satisfy a set of inequalities defining a simple order. They have
proven that a recursive procedure for isotonic regression, later known as pool–adja-
cent–violators–algorithm (PAVA) yields the maximum likelihood estimator of these
probabilities satisfying the constraints. The problem was also independently studied
by Brunk (1955) and van Eeden (1956, 1957, 1958) who provided important general-
ization including the possibility of non-simple ordering. Since then, these results were
further developed in several papers involving studies of the existence and properties of
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728 W. Gamrot

maximum likelihood estimates as in Katz (1963), Sackrowitz and Strawderman (1974),
Parsian and Sanjari Farsipour (1997) and Charras and van Eeden (1991). Alternative
estimators were proposed by Sackrowitz (1982) and Perron (2003). Extensions to
several auxiliary variables were proposed by Burdakov et al. (2004). Recently, Bayes-
ian and minimax approaches to this problem have been emphasized by a paper of
Marchand and MacGibbon (2000). Computation algorithms were provided including
those by Lee (1983), Best and Chakravarti (1990), Qian (1992), Block et al. (1994),
Ahuja and Orlin (2001), Hansohm (2007) as well as Hansohm and Hu (2012). Imple-
mentations of PAVA and other computational methods for isotonic regression are also
widely available in statistical packages as reported by de Leeuw et al. (2009). The
complete discussion of the literature on estimation of ordered probabilities exceeds
the scope of this paper. A good summary of the state of knowledge is presented in
monographs by Barlow et al. (1972), Robertson et al. (1988) and especially by van
Eeden (2006). It appears interesting that all mentioned results share a common fea-
ture: individual binary variables are conveniently assumed to be independent which
greatly facilitates the computation of the likelihood function. The results for corre-
lated binary variables with ordered expectations are not known to this author. On the
other hand, in practice sometimes the independence of individual variables cannot be
guaranteed. Such situations may arise in the insurance industry during the calculation
of insurance premiums (see Sundt 1999, Wolny-Dominiak and Trzȩsiok 2008). These
may depend on probability of a claim-generating event to occur. Such probabilities for
various claim generating events may be known to satisfy a simple order, while occur-
rences of individual claims are correlated. For example, the probability of individual
persons within the household contracting a particular disease to be insured against
may be known to depend monotonically on their age or some other relevant factor,
while occurrences of individual claims are correlated due to possibility of contagion,
genetic similarity or common environmental hazards. Hence, in this paper the prob-
lem of estimating ordered probabilities is generalized by allowing for a dependence
between binary variables. Their joint distribution is found to be a special case of a
multinomial one. Consequently, the original problem is re-formulated as estimation
of multinomial parameters satisfying suitably chosen restrictions.

2 Binary random vectors

Consider the vector of binary random variables x = [x1, . . . , xr ]′ ∈ {0, 1}r with
P(xi = 1) = pi for i = 1, . . . , r being unknown probabilities. Hence the expectation
of x is:

E(x) = [E(x1), . . . , E(xr )]′ = [p1, . . . , pr ]′ = p

Let us also assume that p1, . . . , pr are known to satisfy a simple ordering:

p1 ≤ p2 ≤ . . . ≤ pr (1)
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Maximum likelihood estimation for ordered expectations 729

Moreover let us assume that each of these probabilities is also known to satisfy indi-
vidual constraints in the form:

di ≤ pi ≤ ui (2)

for i = 1, . . . , r . These additional constraints are not associated with correlation issue
nor with ordering constraints but reflect some additional external knowledge which
may be available. If such a knowledge is absent then simply d1 = d2 = . . . = dr = 0
and u1 = u2 = . . . = ur = 1. Now, the problem to be considered is to estimate
p1, . . . , pr from the sample in such a way that the estimates satisfy (1) and (2). The
usual approach is to use maximum likelihood principle based on the assumption that
x1, . . . , xr are independent and the sample is i.i.d. This leads to a likelihood function

Lind(p) =
r∏

i=1

(
n
ki

)
pki

i (1 − pi )
n−ki (3)

where k1, . . . kr represent counts of ones respectively for x1, . . . , xr in the sample of
size n. Such a likelihood function is maximized by

p̂ = [ p̂1, . . . , p̂r ]′ (4)

where p̂i = ki/n for i = 1, . . . , r . However this statistic does not necessarily sat-
isfy conditions (1) and (2). To find a restricted maximum likelihood estimator that
minimizes (3) with respect to (1) an algorithm was proposed by Ayer et al. (1955).
Known as pool–adjacent–violators–algorithm (PAVA) it relies on repeatedly averag-
ing sample proportions for which (1) is violated until it is not. Several modifications of
this procedure were later considered for more complicated situations including partial
support for (2) introduced in the paper of McKeown and Jewell (2010). However,
to our knowledge the assumption of independence between binary variables always
played a crucial role and was not abandoned. We will now drop this assumption.

3 Restricted estimation for correlated variables

A binary vector x of size r may take k = 2r different values. Let vectors a1, . . . , ak

each of length r represent these values, so that

a1 = [1, 1, . . . , 1]′
a2 = [1, . . . , 1, 0]′

...

ak = [0, . . . , 0, 0]′

The last vector ak contains only zeros, which will turn out to be useful later. These
vectors may be arranged in a matrix:
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730 W. Gamrot

A = [ai j ] = [a1, . . . , ak]′

of size k × r . Any realization az of the vector x may be represented by the index
z ∈ {1, . . . , k} having a multinomial distribution characterised by a vector of respec-
tive multinomial probabilities μ = [μ1, . . . , μk]′ ∈ 〈0, 1〉k satisfying

1′
k · μ = 1

while 1t = [1, . . . , 1]′ will in general represent a vector of ones of any length t ∈
{1, 2, . . .}. Parameters p1, . . . , pr depend on μ1, . . . , μk through the formula:

p = A′μ (5)

Hence, one may attempt to estimate components of p by first estimating all individual
components of μ. Let x1, . . . , xn represent individual realizations of x in a sample of
size n. Then let

f = [ f1, . . . , fk]′

be the vector of sample counts associated with respective realizations of z and corre-
sponding to elements of μ so that fi = #{ j : x j = ai } for i = 1, . . . , k. As noted e.g.
by Lehmann and Cassella (1998) the likelihood function for a sample drawn from a
multinomial distribution takes form:

L(μ) = n!
f1! · . . . · fk !μ

f1
1 · . . . · μ

fk
k (6)

However, instead of directly maximizing L(μ) it is convenient to minimize the nega-
tive log-likelihood:

L0(μ) = −log

(
n!

f1! · . . . · fk !
)

−
k∑

i=1

fi log(μi ) (7)

When restrictions for p1, . . . , pr are disregarded the above function is minimized
(unconditionally) at

μ̂ = [μ̂1, . . . , μ̂k]′ = n−1f

which would lead to (4) via (5). However, it may still happen that estimates of p
computed this way do not satisfy (1) or (2). Moreover, known results on restricted
estimation of multinomial parameters presented in the paper of Jewell and Kalbfleisch
(2004) are not applicable here, as each of individual restrictions on pi involves more
than two values of μi . To find a (conditional) minimum of the negative log-likelihood
function (7) satisfying restrictions (1) and (2) one has to re-formulate these restrictions
in terms of μ1, . . . , μk and numerically locate the (conditional) minimum of L0(μ).
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Maximum likelihood estimation for ordered expectations 731

Let ã j = [a1 j , . . . , akj ]′ represent the j-th column of the matrix A for j = 1, . . . , r .
Let us denote:

A+ = [ã1, . . . , ãr−1]
A− = [ã2, . . . , ãr ]

and

A◦ = A− − A+

of size k × (r − 1) each. The set of r − 1 conditions (1) will be satisfied when

A′◦μ ≥ 0r−1

while 0t = [0, . . . , 0]′ will in general represent a vector of zeros of length t ∈
{1, 2, . . .} and any inequality is assumed to hold for two matrices when it holds for
all their respective elements. By denoting d = [d1, . . . , dr ]′ and u = [u1, . . . , ur ]′
conditions (2) may be expressed as:

d ≤ p ≤ u

or equivalently:

d ≤ A′μ ≤ u

Hence, the restricted maximum likelihood estimate μ̂# of μ may be calculated as a
global solution to the optimization problem:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

L0(μ) → min
A′◦μ ≥ 0r−1
d ≤ A′μ ≤ u
0k ≤ μ ≤ 1k

1′
kμ = 1

(8)

To eliminate the equality constraint the last component μk of μ will be expressed as
a function of μ∗ = [μ1, . . . , μk−1]′, according to the formula:

μk = 1 −
k−1∑

i=1

μi = 1 − 1′
k−1μ∗

This lets us represent L0(μ) as the function of μ∗ taking the form:

L0(μ∗) = −log

(
n!

f1! · . . . · fk !
)

−
k−1∑

i=1

fi log(μi ) − fk log

(
1 −

k−1∑

i=1

μi

)
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In order to re-formulate (8) let us denote the (k − 1) × r matrix obtained by dropping
the last row from A by A∗, and the (k − 1) × (r − 1) matrix obtained by dropping the
last row from matrix A◦ by A◦∗. Dropped rows contain only zeros. Consequently A
and A◦ may respectively be expressed in the form:

A =
[

A∗
0′

r

]

A◦ =
[

A◦∗
0′

r−1

]

As a result, the optimization problem may be replaced with an equivalent one involving
only inequality constraints:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

L0(μ∗) → min
A′◦∗μ∗ ≥ 0r−1
d ≤ A′∗μ∗ ≤ u
μ∗ ≥ 0k−1
1′

k−1μ∗ ≤ 1

(9)

4 Computational issues

The matrix inequality d ≤ A′∗μ∗ ≤ u represents in a concise way 2r individual
inequalities. However, if for some i ∈ {1, . . . , r} a trivial value of di = 0 (or ui = 1)
occurs then corresponding individual inequality di ≤ pi (or pi ≤ ui ) is always
satisfied due to requirements: μ∗ ≥ 0k−1 and 1′

k−1μ∗ ≤ 1 in (9). Also, if for any
i ∈ {1, . . . , r} there exists some j ∈ {1, . . . , i − 1} such that d j ≥ di then the
inequality di ≤ pi is always satisfied thanks to ordering constraints. Moreover, if for
any i ∈ {1, . . . , r} there exists some j ∈ {i + 1, . . . , r} such that u j ≤ ui then the
inequality pi ≤ ui is always satisfied thanks to ordering constraints. From a com-
putational point of view it is desirable to eliminate any redundant inequalities. Let
g = [g1, . . . , gr ]′ where

gi =
{

1 when di = 0 or di ≤ max j<i (d j )

0 otherwise

for i = 1, . . . , h and h = [h1, . . . , hr ]′ where

hi =
{

1 when ui = 1 or ui ≥ min j>i (u j )

0 otherwise

for i = 1, . . . , h. Let md = 1′
r g and mu = 1′

r h respectively denote the number of
nonzero elements in g and h. Let dw be a vector obtained by dropping from d all md

elements corresponding to nonzero components in g. Let A∗d be the (k − 1) × (r −
md) matrix obtained from A∗ by dropping all md columns corresponding to nonzero
components in g. Let uw be a vector obtained by dropping from u all mu elements
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Maximum likelihood estimation for ordered expectations 733

corresponding to nonzero components in h. Let A∗u be the (k − 1)× (r − mu) matrix
obtained from A∗ by dropping all mu columns corresponding to nonzero components
in h. The problem (9) may then be transformed to another equivalent form:

{
L0(μ∗) → min
B′μ∗ ≥ b

(10)

where

B = [bi j ] = [
A◦∗ A∗d − A∗u I − 1k−1

]

is of size (k − 1) × h and h = 3r + k − md − mu − 1 while I represents an identity
matrix of size (k − 1) × (k − 1) and

b = [b1, . . . , bh]′ = [
0′

r−1 d′
w − u′

w 0′
k−1 − 1

]′

is of length h. Solving of the problem (10) is facilitated by the following lemma:

Lemma 1 The function L0(μ∗) is convex

Proof The first term does not depend on μ∗ so it is constant and hence it is convex.
As the logarithm is a concave function, and the counts f1, . . . , fk−1 are non-negative,
then the second term is a linear combination of concave functions with non-positive
weights and hence it is convex. Let us consider the third term. Its Hessian is given by:

H = fk
(∑k−1

i=1 μi − 1
)2 J

where J = 1k−11′
k−1 is a matrix of size (k − 1) × (k − 1) with all elements equal to

unity. Then for any x = [x1, . . . , xk−1]′ �= 0k−1 one may derive:

x′Hx = fk
(∑k−1

i=1 μi − 1
)2 x′Jx = fk

(∑k−1
i=1 μi − 1

)2

(
k−1∑

i=1

xi

)2

≥ 0

which means that the third term in L0(μ∗) is convex too. Consequently, the function
L0(μ∗) constructed as a sum of convex terms is also convex. �


The problem (10) involves minimization of a convex criterion function and a set of
linear constraints that is also convex. Hence, it may be solved by using standard con-
vex programming methods such as interior point method discussed in detail by Boyd
and Vandenberghe (2004) or the adaptive barrier majorization-minimization (MM)
algorithm considered by Lange (2001).

In order to use iterative methods mentioned above it is neccessary to identify some
feasible starting point for the iterative process satisfying constraints in (10). This may
be achieved in two steps. First, one may assume without a loss of generality that
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734 W. Gamrot

ui ≤ u j and di ≤ d j for any i < j as the opposite situation is precluded by (1).
The vector of marginal pobabilities representing an initial estimate of p satisfying the
constraints may then be constructed according to the formula:

p̂0 = d + q(u − d)

where q = [q1, . . . , qr ]′ and

qi = i

r + 1

for i=1,. . .,r. Let ◦ represent the Hadamard product. Any vector of multinomial prob-
abilities that leads to p̂0 via (5) also satisfies constraints of (10). In particular this is
true for the vector

μ̂0 = exp(log(1k p̂′
0 ◦ A + 1k(1r − p̂0)

′ ◦ (1k1′
r − A))1k)

which is obtained by assuming that x1, . . . , xr are independent. Consequently, first
k − 1 elements of μ̂0 may serve as an initial estimate of μ∗. Once the global mini-
mum for the problem (10) is located at some point, say μ̂∗#, the maximum likelihood
estimate μ̂# = [μ̂1#, . . . , μ̂k#]′ of μ is obtained as:

μ̂# = [
μ̂′∗#, 1 − 1′

k−1μ̂∗#
]′ (11)

The concept of self-concordance introduced by Nesterov and Nemirovski (1994) will
be useful to analyse the complexity of a numeric optimization problem. Let us recall
that a convex function f : R → R is a self-concordant function if f ′′′(x) ≤ 2 f ′′(x)3/2

for any x in the domain of f . A function f : Rn → R is self concordant functon of
x if f (x + tv) is self-concordant function of t for all v and all x in the domain of f .
This lets us state the following result:

Lemma 2 The function L0(μ∗) is self-concordant

Proof Negative logarithm is self-concordant and the composition of a self-concor-
dant function with affine function is also self-concordant as indicated by Boyd and

Vandenberghe (2004). Hence the expression −log
(

1 − ∑k−1
i=1 μi

)
as well as −log(μi )

for i ∈ {1, . . . , k − 1} are all self-concordant. As f1, . . . , fk are nonnegative integers,
the function L0(μ∗) is a linear combination of self-concordant terms with weights
greater than or equal to one (as terms with no counts vanish), and hence it is also
self-concordant. �

The self-concordance property may be used to establish a rigorous upper bound on
the total number of Newton steps required to solve a problem using barrier method.
This may be done using formulas given by Boyd and Vandenberghe (2004) but will
not be elaborated here.
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Maximum likelihood estimation for ordered expectations 735

5 Estimator properties

If all constraints are satisfied strictly at μ (which in other words means that μ belongs
to the interior of the feasible region) then μ̂# may be shown to be a consistent estimator
for μ. This is stated as follows:

Theorem 1 Let θ̂ be a (weakly) consistent estimator of a parameter vector θ computed
by maximizing the likelihood function L(·). Let θ̂# be an estimator for θ computed
by maximizing the same likelihood function subject to the constraint θ ∈ C for some
non-hollow set C. If θ ∈ interior(C) then θ̂# is (weakly) consistent for θ .

Proof Let θ̂
(n)

and θ̂
(n)

# be realizations of θ̂ and θ̂# for the sample size n. Let the event

ω correspond to the equality θ̂
(n)

# = θ̂
(n)

being satisfied. As θ belongs to the interior

of C , there exists some ε0 such that {δ : |δ − θ | ≤ ε0} ⊆ C . Since |θ̂ (n) − θ | ≤ ε0

implies ω we have P(ω) ≥ P(|θ̂ (n) − θ | ≤ ε0) and P(¬ω) ≤ P(|θ̂ (n) − θ | > ε0) so
that:

P(|θ̂ (n)

# − θ | > ε) = P(|θ̂ (n)

# − θ | > ε|ω)P(ω) + P(|θ̂ (n)

# − θ | > ε|¬ω)P(¬ω)

≤ P(|θ̂ (n)

# − θ | > ε|ω)P(ω) + P(¬ω) = P(|θ̂ (n) − θ | > ε|ω)P(ω) + P(¬ω)

≤ P(|θ̂ (n) − θ | > ε|ω)P(ω) + P(|θ̂ (n) − θ | > ε|¬ω)P(¬ω) + P(¬ω)

= P(|θ̂ (n) − θ | > ε) + P(¬ω) ≤ P(|θ̂ (n) − θ | > ε) + P(|θ̂ (n) − θ | > ε0)

Hence, from consistency of θ̂ we have for any ε > 0:

lim
n→∞ P(|θ̂ (n)

# − θ | > ε) ≤ lim
n→∞ P(|θ̂ (n) − θ | > ε) + lim

n→∞ P(|θ̂ (n) − θ | > ε0)

= 0 + 0 = 0

which means that θ̂# is consistent for θ . �

Corollary 1 If p1 < p2 < . . . < pr and di < pi < ui for i = 1, . . . , r then μ̂# is
(weakly) consistent for μ.

It is important to note that the above proof is based on a tacit assumption that the
conditional extremum of the criterion function is located exactly. In practice it may
be located numerically with arbitrarily high accuracy so this condition may safely be
considered satisfied. The corresponding estimate of the vector p is then calculated
according to the formula:

p̂# = A′μ̂# (12)

It is also possible to construct an estimator for the covariance matrix of x:

V (x) = E((x − E(x))(x − E(x))′)
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736 W. Gamrot

in the form of a statistic:

V̂ (x) = A′(diag(μ̂#) − μ̂#μ̂
′
#)A

If all constraint inequalities are strict so that p1 < p2 < . . . < pr and di < pi < ui

for i = 1, . . . , r , then by the invariance theorem of Goldberger (1964) the statistic p̂# is
a consistent estimator for p and V̂ (x) is a consistent estimator for V (x). By invariance
theorem discussed by Bartoszyński and Niewiadomska-Bugaj (2008) both statistics
are respectively maximum likelihood estimators for p and V (x). Both statements are
not guaranteed to be true when some of constraint inequalities are not satisfied strictly.

6 Numerical example

Let r = 3 so that three probabilities p1 ≤ p2 ≤ p3 are to be estimated. For simplicity
let d = 03 and u = 13 so individual bounds are trivial. This results in B and b taking
the form:

B =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 0 0 0 0 0 0 −1
1 0 0 1 0 0 0 0 0 −1

−1 1 0 0 1 0 0 0 0 −1
0 1 0 0 0 1 0 0 0 −1
0 −1 0 0 0 0 1 0 0 −1
1 −1 0 0 0 0 0 1 0 −1

−1 0 0 0 0 0 0 0 1 −1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

and

b = [ 0 0 0 0 0 0 0 0 0 − 1 ]

First two columns in B above correspond to ordering constraints. The last column
corresponds to the condition 1′

k−1μ∗ ≤ 1 and remaining columns correspond to the
requirement μ∗ ≥ 0k−1.

Assume that n = 35 realizations of random vector x were observed. Realized
counts f = [ f1, . . . , fk]′ associated with all k = 2r = 8 possible values of x and
corresponding sample proportions μ̂ = [μ̂1, . . . , μ̂k]′ are shown in Table 1.

This results in a vector of sample proportions:

p̂ = A′μ̂ = [0.4286 0.5429 0.2857]′

that clearly violates ordering constraints. At the same time, the solution to the problem
(10) is located at the point:

μ̂# = [0.0286 0.0571 0.1408 0.1878 0.2054 0.1232 0.0286]′
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Maximum likelihood estimation for ordered expectations 737

Table 1 Observed realizations
of the vector x in the numerical
example

i ai fi μ̂i

1 1 1 1 1 0.0286

2 0 1 1 2 0.0571

3 1 0 1 3 0.0857

4 0 0 1 4 0.1143

5 1 1 0 10 0.2857

6 0 1 0 6 0.1714

7 1 0 0 1 0.0286

8 0 0 0 8 0.2286

The proposed estimator is then calculated via (11) and (12) and it takes the value:

p̂# = [0.4033, 0.4143, 0.4143]′

The PAVA-based estimator of Ayer et al. (1955) is computed in this case by averaging
all elements in p̂ (firstly, the second and third element, then all three of them) and it
takes the value:

p̂P AV A = [0.4190, 0.4190, 0.4190]′

Hence, it has been demonstrated that the proposed estimator and the PAVA-based one
may take different values while both satisfy ordering constraints.

7 Conclusions

The proposed procedure clearly produces different estimates than those obtained by
PAVA. If the constraints are known to be satisfied strictly, realizations of proposed var-
iance estimator may be compared with those known for PAVA to compare accuracy of
both estimation procedures. Also, still more analytical research is needed to assess the
properties of proposed estimator when some or all constraints are not satisfied strictly.

From the technical point of view an obvious limitation of the proposed approach
lies in rather poor scalability, as the number of optimization variables grows expo-
nentially with r . The exact threshold of applicability depends on available hardware
and software and hence it is rather hard to be correctly pinpointed. Nevertheless, the
proposed estimator should be useful for binary vectors with small number of com-
ponents, especially in situations, where large sample size may be expected. It seems
that after minor modifications the proposed approach might also be used to deal with
non-simple orderings of estimated parameters.

Acknowledgements The work was partially supported by the Grant No N N111 558540 from the Ministry
of Science and Higher Education. The author is indebted to two anonymous referees for helpful comments
that led to generalization of the consistency theorem and improvement of the manuscript.

Open Access This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original author(s) and
the source are credited.

123



738 W. Gamrot

References

Ahuja RK, Orlin JB (2001) A fast scaling algorithm for minimizing separable convex functions subject to
chain constraints. Oper Res 49:784–789

Ayer M, Brunk HD, Ewing GM, Reid WT, Silverman E (1955) An empirical distribution function for
sampling with incomplete information. Ann Math Stat 6(4):641–647

Barlow RE, Bartholomew DJ, Bremner JM, Brunk HD (1972) Statistical inference under order restrictions.
Wiley, New York
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