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Predicting Seam Performance of Commercial Woven Fabrics 
Using Multiple Logarithm Regression and Artificial Neural 
Networks

Chi Leung Hui1 and Sau Fun Ng
Institute of Textiles and Clothing, The Hong Kong 
Polytechnic University, Hung Hom, Kowloon

In cut and sewn apparel products, seams are formed when
two or more pieces of fabric are held together by stitches.
As the seam is one of the basic requirements in the con-
struction of apparel, seam quality has great significance in
apparel products. Consumers evaluate the seam quality of
a particular fabric mainly based on the seam performance
of a particular fabric sewn by a particular sewing thread.
Many previous studies [1–4] have shown that seam per-

formance of a particular fabric depends on the interrela-
tionship of fabrics, threads, stitch type, seam type, and
sewing conditions. Sewing conditions include the needle
size, stitch density, and the appropriate operation and
maintenance of the sewing machines. The seam perform-

Abstract In this study, the capability of artificial
neural networks and multiple logarithm regres-
sion methods for modeling seam performance of
commercial woven fabrics based on seam pucker-
ing, seam flotation and seam efficiency were
investigated. The developed models were assessed
by verifying Mean Square Error (MSE) and Cor-
relation Coefficient (R-value) of test data predic-
tion. The results indicated that the artificial neural
network (ANN) model has better performance in
comparison with the multiple logarithm regres-
sion model. The difference between the mean
square error of predicting in these two models for
predicting seam puckering, seam flotation, and
seam efficiency was 0.0394, 0.0096, and 0.0049,
respectively. Thus, the ANN model was found to
be more accurate than MLR, and the prediction
errors of ANNs was low despite the availability of
only a small training data set. However, the differ-
ence in prediction errors made by both models was
not significantly high. It was found that MLR mod-
els were quicker to construct, more transparent,
and less likely to overfit the minimal amount of
data available. Therefore, both models were effec-
tively predicting the seam performance of woven
fabrics.

Key words seam performance, commercial
woven fabrics, multiple logarithm regression, arti-
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ance of a particular fabric mainly depends on three aspects:
seam puckering, seam flotation, and seam efficiency. Seam
puckering is used to determine the seam appearance of fab-
rics sewn by sewing thread under a particular sewing condi-
tion [5,6]. Seam flotation is used to determine the degree
of deformation along the seam line because of the interac-
tion of the shear load (affecting the fabric through the sew-
ing thread) and fabric extension in the area of the seam
[5,7]. Seam efficiency is used to assess the durability of the
seam, which is the ratio of seam strength to fabric strength
of the fabrics sewn [8,9]. These three parameters are cur-
rently adapted by the apparel industry to assess the seam
performance of commercial woven fabrics.

Generally, modeling and prediction of seam perform-
ance of fabric based on fabric properties and sewing
parameters have been considered by many researchers.
Over the years, one of the first approaches has been the
use of mathematical models. In this category, studies such
as the work of Germanova and Petrov [10], Fan et al. [11],
Gersak [5] and Stylios [12] had to predict seam puckering
and seam efficiency. In addition, statistical regression mod-
els for this purpose have been used by some researchers,
namely Juciene and Dobilaite, Mariolis and Dermatas, and
Koehl et al. [13–15].

The limitation of mathematical and statistical regres-
sion models was described in previous works [16,17]. Some
branches of artificial intelligence (AI) called artificial neu-
ral networks (ANNs), genetic algorithm, machine learning
and fuzzy set theory presented attractive alternatives for
predictive modeling. In this category, studies such as Park
and Kang [18] evaluating the shape parameters of seam
puckering using a neurofuzzy approach, and Pavlinic et al.
[19] predicting seam quality using machine learning were
conducted. Other studies [20,21] gave good predictive per-
formance using a hybrid approach in a particular area such
as clothing comfort. However, ANN algorithms have been
proved successful by many researchers for modeling in vari-
ous textile and clothing areas [11,17,22–27]. This is a reason
why ANN and multiple regression models were investigated
in our study.

There is no previous work determining the suitable
modeling tool for predicting seam performance based on
various fabric properties. In this study, we aimed to com-
pare the capability of two algorithms, statistical regression
and ANN, for predicting the seam performance of com-
mercial woven fabrics based on seam puckering, seam flo-
tation and seam efficiency in order to identify a suitable
modeling method of seam performance which is meaning-
ful to textile and clothing industries.

Artificial Neural Networks (ANNs)

ANNs represent a set of very powerful mathematical tech-
niques for modeling, control and optimization [28]. ANN is
a powerful data modeling tool that is able to capture and
represent each kind of input-out relationship [29]. A neu-
ral network is composed of simple elements called “neu-
ron” or “processing element” operating parallel, which is
inspired by biological neuronal systems. In nature, the net-
work function is determined largely by weighted connec-
tion between the processing elements [30]. The weights of
connections contain the “knowledge” of the network [28].
A neural network is usually adjusted or trained so that a
particular input leads to a specific output [30]. The process
of training is adjusting these weight values to slide down
the prediction error [28]. Among the various kinds of algo-
rithms for training neural networks, back propagation is
the most widely used. This algorithm was detailed by Pat-
terson [31] and Schalkoff [32].

Experimental

Preparation of Training and Testing Data Set
Fifty woven fabrics, commercially used for the manufac-
ture of men’s’ and women’s outerwear, were selected in
the course of the garment manufacturing process. Particu-
lars of fabric specimens are listed in Table 1. They differed
in raw material content, mass, weave, and construction
parameters.

A review of the past literature [5,19,33] indicates that
the degree of seam puckering depends on the structure,
construction and fineness of the fabric, its mechanical prop-
erties, sewing needle gauge and stitch length. The degree of
seam efficiency depends on the thickness of sewing thread,
extensibility of sewing thread and fabric strength [34]. The
degree of seam flotation depends on the bending and
shearing properties, the formability of fabric and exten-
sion of fabric [19]. Therefore, such fabric mechanical
properties related to seam performance (as shown in
Table 2) were determined in the area of low loads, using
the KES-FB measuring system at standard measuring con-
ditions [35,36]. In addition, fabric weight in g/m2 and fab-
ric strength in N were measured according to the ASTM
D3776-96 standard and the ASTM D5034 test methods
respectively.

All seam specimens were prepared by a 100% spun pol-
yester (35 Tex) commercial sewing thread sewn on the fab-
ric specimen under plain seam type (ISO 1.01.01) in single
needle lockstitch (ISO 301). Stitch density (10 stitches per
inch) commonly used for sewing of commercial woven fab-
rics were selected in this study. As our study is mainly con-
cerned with the modeling of fabric properties on seam
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Table 1 Particulars of Fabric Specimens.

Fabric Sample Weave 
Construction

Material Ends/cm Picks/cm Weight 
(gm/m2)

Thickness 
(mm)

1 Plain 100% Cotton 32 18 884.5 1.31

2 Plain 100% Cotton 24 13 680.2 1.19

3 Plain 100% Cotton 39 26 544.3 0.86

4 Plain 100% Cotton 46 28 476.2 0.83

5 Plain 100% Cotton 72 40 342 0.57

6 Plain 100% Cotton 94 48 273.6 0.52

7 Plain 100% Cotton 104 53 214.4 0.59

8 Plain 100% Cotton 90 50 153.2 0.42

9 Plain 100% Cotton 128 70 254 0.33

10 Plain 100% Cotton 60 44 308 0.27

11 Plain 100% Cotton 136 62 151 0.39

12 Plain 100% Cotton 60 60 167 0.50

13 Plain 100% Cotton 130 70 150 0.35

14 Plain 100% Cotton 104 53 181 0.52

15 Plain 100% Cotton 160 78 136 0.36

16 Plain 100% Cotton 136 62 151 0.45

17 Plain 100% Cotton 164 62 184 0.55

18 Plain 100% Cotton 130 80 131 0.38

19 Plain 100% Cotton 72 72 102 0.25

20 Plain 100% Cotton 60 60 167 0.44

21 Plain 100% Cotton 172 70 250 0.55

22 Plain 100% Cotton 170 120 130 0.39

23 Plain 100% Cotton 110 53 183 0.54

24 Plain 100% Cotton 56 54 150 0.45

25 Plain 100% Cotton 150 80 206 0.51

26 Satin 98% Cotton 2% Spandex 190 60 255 0.56

27 Plain 98% Cotton 2% Spandex 96 56 185 0.34

28 Plain 55% Linen 45% Cotton 51 47 199 0.4

29 Twill 98% Cotton 2% Spandex 156 60 278 0.56

30 Satin 59% Cotton 38% Nylon 3% Spandex 196 92 216 0.48

31 Plain 97% Cotton 3% Spandex 164 78 198 0.32

32 Twill 98% Cotton 2% Spandex 124 44 260 0.5

33 Twill 78%Cotton 20%Polyester 2%Spandex 126 58 193 0.39

34 Twill 98% Cotton 2% Spandex 156 50 288 0.56

35 Plain 98% Cotton 2% Spandex 66 40 311 0.6

36 Twill 97% Cotton 3% Spandex 132 58 241 0.49

37 Plain 100% Cotton 94 46 270 0.41
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performance of various fabrics, a sewing thread and all
sewing conditions were kept the same for preparing all
seam specimens in the experiment.

Each seam specimen was analyzed regarding its impact
on seam performance i.e. smoothness of the seams (e.g.
seam puckering and seam flotation) and durability of the
seams (e.g. seam efficiency) [34]. The seam puckering and
seam flotation were performed by the regulation of the

AATCC standard. The grades were divided into five classes
[5,37]: 5, high quality seam appearance; 4, good appear-
ance, insignificant seam puckering or flotation; 3, accepta-
ble appearance, noticeable puckering or flotation; 2, below
average appearance, significant puckering or flotation; 1,
poor appearance, unacceptable puckering or flotation of
the seam. In measuring the durability of seam, it was sub-
jectively rated in the five classes commonly adopted by the
field: 5, highest durability of sewn seam; 4, higher durabil-
ity of sewn seam; 3, modest durability of sewn seam; 2,
lower durability of sewn seam; 1, lowest durability of sewn
seam. All seam specimens were judged by experienced
field experts.

In the model formulation of seam performance, there
are three separate models for seam puckering, seam flota-
tion and seam efficiency respectively. For each model, the
input variables include all fabric properties affecting the
corresponding seam performance as shown in Table 2 and
the output variable is the rating of seam performance.

Neural Networks Parameters
In this study, due to the availability of only a small sample
data set, the five-fold cross-validation technique was used
for evaluating the prediction error rate of the neural net-
work model. Therefore, the data set of fifty samples was
divided randomly into five subsets, each containing ten
samples, in accordance with other works [17,38]. The sub-
sets were combined together and five sets of train and test
data were designed. Each time, four subsets were used as
training set and one subset as testing set. Consequently, we
trained and tested each designed network five times.

Table 1 (continued)

Fabric Sample Weave 
Construction

Material Ends/cm Picks/cm Weight 
(gm/m2)

Thickness 
(mm)

38 Plain 100% Cotton 100 60 76 0.2

39 Plain 100% Cotton 92 52 213 0.38

40 Twill 97% Cotton 3% Spandex 132 58 247 0.44

41 Plain 55% Linen 45% Cotton 66 52 147 0.38

42 Plain 55% Linen 45% Cotton 64 48 168 0.34

43 Plain 98% Cotton 2% Spandex 190 60 251.5 0.5

44 Plain 65% Cotton 35% Polyester 110 76 99 0.21

45 Plain 55% Cotton 45% Viscose 101 50 123 0.32

46 Plain 55% Cotton 45% Ramie 60 60 124.5 0.31

47 Plain 55% Cotton 45% Polyester 110 76 94 0.20

48 Plain 55% Cotton 45% Linen 47 58 164.3 0.35

49 Plain 55% Cotton 45% Viscose 40 38 208.9 0.48

50 Plain 98% Cotton 2% Spandex 170 50 189.2 0.36

Table 2 Influence of fabric properties measured on the 
KES-FB in seam performance.

Fabric property Unit

LT – linearity of extension curve

WT – tensile energy

EMT – fabric extension at 5N/cm

RT – tensile resilience

α – ratio of weft extension to warp extension 
(EMT2/EMT1)

G – shear rigidity

2HG – shear hysteresis at 0.5o shear angle

2HG5 – shear hysteresis at 5o shear angle

B – bending rigidity

2HB – bending hysteresis

T0 – thickness under 0.5g/cm2 pressure

Tm – thickness under 50g/cm2 pressure

–

cN cm/cm2

%

%

–

cN/cm deg

cN/cm

cN/cm

cN cm2/cm

cN cm/cm

mm

mm
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Since the objective of training is to obtain an effective
generalization of the relationship between inputs and the
outputs, memorization or over-fitting of networks was pre-
vented by using the weight decay technique [39]. This
involved modifying the performance function. On the basis
of MATLAB software, the mean square error regulariza-
tion (MSEREG) performance function was used instead of
common mean square error function. This function is as
follows:

(1)

where γ is the performance ratio and 

(2)

In equation (2), n is the number of weighted connections
and wj is the connection weights of neural networks. This
performance function causes the network to have smaller
weights and biases. This will force the network response to
be smoother and less likely to over-fit [40].

Based on the neural network toolbox of MATLAB soft-
ware, weight decay generally provides better generalization
performance network. This is due to the fact that weight
decay does not require a validation data set to be separated
from the training data set. It uses all of the data, and this
advantage is especially noticeable when the size of the data
set is small [40].

Before training, it is often useful to scale the inputs and
outputs so that they always fall within a specified range,
and to eliminate the effect of different units of input and
output parameters. Therefore, data normalizing was car-
ried out in such a way that there was zero mean and unit
standard deviation [41].

One of the important parameters in the back propaga-
tion learning algorithm is the learning rate. Choosing a
large learning rate value accelerates the training but causes
big errors at the output or destabilizes the training cycles,
but a small value provides convergence with smaller errors
and prolongs training time [42]. In this study, we used the
adaptive learning rate with momentum training algorithm
to enhance the training performance. Momentum rate was
generally optimized at 0.9 [41].

The number of hidden neurons and number of hidden
layers are usually adjusted by trial and error. Studies by
various researchers have shown that neural networks with
one hidden layer are suitable for the majority of applica-
tions, and the second hidden layer can improve the per-
formance of the network if there is a complex relationship
between input and output parameters [41]. In this study, we
adopted one hidden layer for constructing ANNs. Mean-
while, we adopted Hyperbolic Tangent activation function
for neurons of hidden layers and linear activation function

for neurons of output layer because it was proved to pro-
vide the best performance in ANNs [41].

Statistical Regression Method
Statistical regression is a model for analyzing and modeling
of dependent variables as a function of one or more inde-
pendent variables. The simplest form of regression is mul-
tiple linear regression. Statistical regression, especially
multiple linear regression, has been one of the most popu-
lar methods for making predictive models in a wide range
of textile-related problems [27,29,42,43], and is accepted as
a conventional method [42].

However, in past works [6,10,11,13] it has been
reported that the relationship between fabric properties
and seam performance of fabric are close to curvilinear in
nature. This means that logarithm exercise could be used
as a predictor in the multiple regression model. Therefore,
in this study, we applied the common logarithm method to
transform all values of independent variables in the multi-
ple regression model for predicting seam puckering, seam
flotation and seam efficiency respectively. Each regression
model is expressed in the equation (3).

(3)

where xi = dependent variable, i; y = independent varia-
ble; βi = beta coefficient associated with dependent varia-
ble, i; β = intercept calculated in logarithmic space; and
n = number of independent variables.

The stepwise regression procedure was used in this
study as it automatically selected the variables to be
entered into the model. Variables with p-values less than
0.05 were entered into the regression model and removed
from the model if their p-value increased above 0.10. In
addition, variables were also removed if they were consid-
ered to have counterintuitive beta coefficients. As a result,
excessive numbers of these variables were prevented from
entering the model.

Here, the same five sets of data used for evaluating
ANN model were used in such multiple regression. Then,
the resulting three predictive multiple logarithm regression
models were applied to the testing data sets.

Results and Discussion

To measure the performance of multiple regression model
and the ANNs, we used correlation coefficient (R-value) and
mean square error (MSE). The results of two models for
predicting training and testing data are shown in Tables 3
to 6.   

MSEREG γ MSE( ) 1 γ–( )MSW+=

MSW 1
n
--- wj

2

j 1=

n

∑=

log y( ) β0 βilog xi( )

i 1=

n

∑+=
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Table 3 Performance of ANN on training data sets.

Data set MSE (Seam 
puckering)

MSE (Seam 
flotation)

MSE (Seam 
efficiency)

R-value (Seam 
puckering)

R-value (Seam 
flotation)

R-value (Seam 
efficiency)

1

2

3

4

5

0.0633

0.0582

0.0742

0.0655

0.0617

0.0552

0.0457

0.0612

0.0431

0.0455

0.0441

0.0364

0.0468

0.0387

0.0355

0.913

0.938

0.928

0.942

0.937

0.923

0.930

0.939

0.941

0.950

0.982

0.990

0.987

0.986

0.981

Average 0.0646 0.0501 0.0403 0.932 0.937 0.985

Table 4 Performance of ANN on testing data sets.

Data set MSE (Seam 
puckering)

MSE (Seam 
flotation)

MSE (Seam 
efficiency)

R-value (Seam 
puckering)

R-value (Seam 
flotation)

R-value (Seam 
efficiency)

1

2

3

4

5

0.0617

0.1011

0.0581

0.2108

0.1105

0.0487

0.0986

0.0488

0.1111

0.0785

0.0388

0.0283

0.0356

0.0787

0.0436

0.821

0.772

0.897

0.638

0.821

0.853

0.801

0.926

0.778

0.887

0.901

0.863

0.928

0.813

0.902

Average 0.1084 0.0771 0.0450 0.790 0.849 0.881

Table 5 Performance of multiple logarithm regression on training data sets.

Data set MSE (Seam 
puckering)

MSE (Seam 
flotation)

MSE (Seam 
efficiency)

R-value (Seam 
puckering)

R-value (Seam 
flotation)

R-value (Seam 
efficiency)

1

2

3

4

5

0.0877

0.0601

0.0711

0.0781

0.0723

0.0637

0.0551

0.0781

0.0687

0.0693

0.0582

0.0465

0.0536

0.0488

0.0521

0.891

0.907

0.882

0.895

0.910

0.893

0.899

0.921

0.918

0.928

0.921

0.943

0.937

0.946

0.934

Average 0.0739 0.0670 0.0518 0.897 0.912 0.936

Table 6 Performance of multiple logarithm regression on testing data sets.

Data set MSE (Seam 
puckering)

MSE (Seam 
flotation)

MSE (Seam 
efficiency)

R-value (Seam 
puckering)

R-value (Seam 
flotation)

R-value (Seam 
efficiency)

1

2

3

4

5

0.0811

0.1211

0.0738

0.3144

0.1488

0.0783

0.1003

0.0683

0.1366

0.0899

0.0402

0.0367

0.0374

0.0863

0.0489

0.858

0.750

0.847

0.589

0.786

0.882

0.789

0.882

0.801

0.898

0.867

0.823

0.877

0.803

0.886

Average 0.1478 0.0947 0.0499 0.766 0.850 0.851
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In order to test the performances and validate the pre-
dictions of the regression models and ANN models, we
used a testing data set to compare with the predictions from
the models on the basis of the measured fabric properties.
Figures 1(a) to 1(c) compare the predicted and experimen-
tal ratings in seam efficiency, seam puckering, and seam
flotation respectively.

The obtained results of average MSE and correlation
coefficient of five sets of testing data indicated that the

performance of the ANN model was better than the multi-
ple regression model. The differences between the MSE
value of the two models for predicting seam puckering,
seam flotation and seam efficiency were 0.0394, 0.0096,
and 0.0049, respectively. In relation to seam puckering, the
maximum MSE in the neural network model for predicting
testing data was lower than the maximum MSE in the multi-
ple regression model for similar prediction (0.2108<0.3144).
Similarly, the maximum MSE for predicting the seam flota-

Figure 1 Comparison between
regression and ANN model pre-
dictions of (a) seam efficiency, (b)
seam puckering, and (c) seam flo-
tation.
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tion and seam efficiency in the neural network model was
lower than the prediction in multiple regression model.
Therefore, it is important to consider the lowest MSE in
the prediction of testing data occurring in the neural net-
work model. Table 7 shows the difference between correla-
tion coefficient of the two models.

The performance of the multiple regression model with
a common logarithm method in explaining seam perform-
ance is quite close to the performance of ANN model
(within five percent) because both of them are dealing with
the non-linear relationship. It indicates that these two mod-
eling methods could effectively capture the non-linear rela-
tionship, especially in prediction of seam performance.

Conclusions

In this study, we used an ANN technique based on a back
propagation algorithm with weight decay technique and
multiple regression with common logarithm method to
predict the seam performance of woven fabrics based on
seam puckering, seam flotation and seam efficiency respec-
tively.

The ANN model was found to be more accurate than
multiple regression and the prediction errors of ANN were
low despite the availability of only a small training data set.
However, the difference of prediction errors made by both
models was not significantly high. It was found that regres-
sion models were quicker to construct, more transparent,
and less likely to overfit the minimal amount of data availa-
ble. Therefore, both models were effectively predicting the
seam performance of woven fabrics.
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