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Abstract: Problem statement: The pan evaporation coefficient (Kp) is used to vesh pan
Evaporation (Ep) to reference EvapotranspiratiomojEdue to its simplicity and suitability for
locations with limited availability of meteorologicdata.Approach: This study presents the use of
neuro-genetic approach for estimating Kp for Clagsan and Colorado Sunken pan under green and
dry fetch conditionsResults. Representative values were used to represent tegarg data, i.e.,
wind run and relative humidity. It was found thla¢ tgenetic algorithm helped automatically search fo
the optimal structure of the back-propagation nekwaeeplacing the very tedious trial and error
approach.Conclusion: A comparative analysis showed that the neural-genagpproach fairly
outperformed previous proposed Kp equations fohn lgoten and dry fetch conditions.
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INTRODUCTION pan placed in a short green cropped area and a pan
placed in a dry fallow area.

Hydrological extreme events are typically defined  Several Kp equations have been suggested based
as floods and droughts. Floods are associatedhigth ~ on the FAO-24 Kp tables using linear, nonlinear and
rainfall and may cause dam break events (Tingsdinchandicator regression techniques or combinationgetfe
and Chinnarasri, 2001) while drought is associatisd ~ There are a few regression equations for predidtieg
lack of precipitation and high evaporation. ForKp values for a FAO Class A pan placed in a short
modeling purpose and decision making, it is theeefo  9'€€n cropped area based on the FAO-24 Kp Table
need for a study to estimate hydrological dateafems ~ (Frevert et a., 1983; Cuenca, 1989; Snyder, 1992;
with lack of data and different climatic conditions R@9huwanshi and Wallender, 1998).

(Hosseiniet al., 2011). Cuenca (1989) modified Kp equation as prqposed

Pan Evaporation (Ep) has become a WidespreaBy Frevertet al (1983) by rounding off the coeff|(_:|ents
method for estimating reference EvapotranspiratiorP! the equation. Snyder (1992) used the represeatat
(ETo) due to its simplicity, low cost, ease of datavalues to represent the category data of wind ma a
interpretation and application and suitability for relative humidity and applied a least-squares sjoe
locations with limited availability of meteorologit ~ approach for predicting Kp values.
data (Phene and Campbell, 1975; Trajkovic, 2008). T  To develop a Kp equation for Class A pan placed
convert Ep to ETo, a pan coefficient (Kp) is neeegs in short green cropped areas, Raghuwanshi and
Although the FAO-24 Kp Table 1 provides Kp values, Wallender (1998) applied the indicator regression
several Kp equations have been developed fotechnique, which is a widely accepted approach for
estimating Kp values (Cuenca, 1989; Snyder, 1992¢leveloping a relationship between categorical and
Allen, 1998; Raghuwanshi and Wallender, 1998;quantitative data.

Abdel-Wahed and Snyder, 2008). Those equations were Allen (1998) and Abdel-Wahed and Snyder (2008)
developed for two types of pan, i.e., Class A andproposed Kp equations for an FAO Class A pan placed
Colorado sunken pans and for two conditions, ge., in a dry fallow area.
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Table 1: Pan coefficients for different pan sitamgl environments (Cuenca, 1989)

Colorado sunken Colorado sunken pan
Class A pan under green Class A pan under dry n upder green under dry fetch
fetch condition (case I) fetch condition case Il)  fetch condition (case Ill) condition (case 1V)
RH mean (%) RH mean (%) RH mean (%) RH mean (%
Windward
Wind speed  side Low Medium High low Medium High ow Medium High Low Medium  High
(km/day) distance <40 40-70  >70 <40 40-70 >70 40< 40-70 >70 <40 40-70 >70
Light 1 0.55 0.65 0.75 0.70 0.8 0.85 0.75 0.75 0.80 1.10 1.10 1.10
<175 10 0.65 0.75 0.85 0.60 0.70 0.80 100 100 001. 0.85 0.85 0.85
(<2msed) 100 0.70 0.80 0.85 0.55 0.65 0.75 1.10 1.10 1.10 0.75 0.75 0.80
1000 0.75 0.85 0.85 0.50 0.60 0.70 - - - 0.70 0.70 0.75
Moderate 1 0.50 0.60 0.65 0.65 0.75 0.80 0.65 0.70 0.70 0.95 0.95 0.95
175-425 10 0.60 0.70 0.75 0.55 0.65 0.70 0.85 0.85 0.90 0.75 0.75 0.75
(2-5msed) 100 0.65 0.75 0.80 0.50 0.60 0.65 095 0.95 0.95 0.65 0.65 0.70
1000 0.70 0.80 0.80 0.45 0.55 0.60 - - - 0.60 0.60 0.65
Strong 1 0.45 0.50 0.60 0.60 0.65 0.70 055 060 650. 0.80 0.80 0.80
425-700 10 0.55 0.60 0.65 0.50 0.55 0.65 0.75 0.75 0.75 0.65 0.65 0.65
(5-8 msed) 100 0.60 0.65 0.70 0.45 0.50 0.60 0.80 0.80 0.80 0.55 0.60 0.65
1000 0.65 0.70 0.75 0.40 0.45 0.55 - - - 0.50 0.55 0.60
Very strong 1 0.40 0.45 0.50 0.50 0.60 0.65 0.50550. 0.60 0.70 0.75 0.75
> 700 10 0.45 0.55 0.60 045 0.50 0.55 065 0.70 700. 0.55 0.60 0.65
(>8msed) 100 0.50 0.60 0.65 0.40 0.45 0.50 0.70 0.75 0.75 0.50 0.55 0.60
1000 0.55 0.60 0.65 0.35 0.40 0.45 - - - 0.45 0.50 0.55

Allen (1998) also proposed two Kp equations for The main function of this model is based on ANNs
Colorado sunken pans surrounded by green and ity fe while a GA helps to automatically find a suitable
conditions. All of the existing Kp equations areeth structure for the network, i.e., the decision Valea are
function of the daily mean Relative Humidity (RH,%) the number of hidden layers, the number of nodes in
daily mean wind speed at 2 m height,(Um/day) and each hidden layer and the transfer functions used.
fetch distance (F, m). The main differences are thgeyro-genetic process includes two sub-processes: A
selecteq representative vall_Je_s of each range af mim  Neural Network (NN) process (an inner iterativedpo
categories and relative humidity categories. nd a genetic algorithm process (an outer iterative

ThE neudro-gene_tic lapp.rc;]ach,_a hlyb.ridl of neura oop). Detailed information for neuro-genetic preses
networks and genetic algorithms, is relatively nlew . (o caenin Fig. 1.

predicting pan cqefficient Values' T_he main funetief A typical Back Propagation (BP) neural network
the neuro-genetic approach is still based on neurasltructure which includes one input layer, one arem
networks, while the genetic algorithm helps ’ P yer,

automatically search for the optimal structure loé t hidden Iaye_rs and one output layer, is shown in Eig
network. Only two related research projects for the=ach layer is made up of several neurons and yfeeda
estimation of reference evapotranspiration facteese ~ &'€ interconnected by sets of weights. The neunons
found in the literature. Trajkoviet al. (2000) applied a the input layer receive input directly from the up
radial basis function network to estimate the FAQVariables. The neurons in the hidden and outplwriay
B|anney-Cridd|e factor. Trajkovicet al. (2001) receive Input from the interconnections. Neurons
estimated the FAO Penman factor using a radialsbasioperate on the input and transform it to produce an
function network. analogue output. The transformation is performed in
This sutdy presents the application of the neuroiwo stages. First, the input from each neuron is
genetic approach to estimating pan evaporatiomultiplied by weights and a weighted sum is taken.
coefficient values for Class A pans and ColoradoNext, an activation function such as the sigmoid
Sunken pans under green and dry fetch conditions. T function converts such a weighted sum to be thpuiut
statistical performance comparison was undertakenf each neuron, which becomes the input to neuobns
between this nt_auro—genetic approach and the previotithe succeeding layer.
proposed equations. The training of a BP neural network involves two
MATERIALSAND METHODS stages (Kumaet al., 2002). In the first stage (forward
pass), the input signals propagate from the network
The neuro-genetic approach is a hybrid modelnPut to the output. The calculation of the outpait

between Artificial Neural Networks (ANNs) and carried out, layer by layer, in the forward directi The
Genetic Algorithms (GAS). output of one layer is the input to the follogitayer.
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Randomly generate an initial population of string ‘

]

BP neural network training process ‘

Replacement

Mutation

Crossover

Fitness evaluation

Termination

Each string consists of a number of blocks, which
represent the individual variables of the probl&the
variables represented in the string can be prodeisse
an evaluation function, or fitness function, whighin
effect the objective function.

GA consists of three basic operations (selection,
crossover and mutation) involved in manipulating
strings and moving to a new generation. The selecti

Selection

Criterion satisfied? operator is that through which strings are seleéted
inclusion in the reproduction process and for
participation in the next generation. The fittesing)s
have the highest probability of being used in
reproduction. The crossover operator permits the
exchange of genes between pairs of chromosomes in a
population. This operator offers the possibility of
good genetic material from different individualisgs
being combined to create an even fitter individual.
The mutation operator permits new genetic mateoial
be introduced to a population. As shown in Fig. 1,
replacement is used to refill the population that i
dropped due to poor chromosomes during the
selection process.

‘ Obtain optimal ANN structure |

Fig. 1: Neuro-genetic process

Input layer Hidden layers Output layer

Fig. 2: Typical BP neural network structure RESULTS

In the second stage (backward pass), the calculated
error signals propagate backward through the nédwor
where they are used to adjust the weights of th
connections in order to improve a predefined
performance measure. Initially, since the weigbtthe
interconnections are randomly generated, the diffee
between the predicted and desired output valuedean
large. Leamlng th_erefore m_vqlvgs |terat|ve_ly ating conditions (case V),
the connection weights to minimize these differsnce .

The Kp values depends on the fetch distance (F),

There are two parameters of concern for a BP

| network: the | ) @ @and th ¢ which is quantitative data and two qualitative (or
neural network: the learning rate) @nd the momentum  .o40qorical) data, i.e., the daily mean Relativenidiity

rate @). The learning rate controls the incremental RH) and daily mean wind speed (U). Hence, the
change in the interconnection weights during iteeat strycture of the neural networks comprised thregeso
training as a percentage of the difference betwben of input layer, i.e., In (F), RH and U and one nade
desired or target output and the NN computed outpuiputput layer, i.e., Kp data.
Thus, a high learning rate generally results irarger The total data sets are 48 for cases I, || andn¥l
weight change and faster learning. The momentuen ratthe total data sets are 36 for case IlIl. Those dats
is a means to increase the rate of learning andidhe  were randomly divided into two parts, that is, 9686
possibility of getting trapped in local optima. The training and 10% for testing networks. Four catégor
momentum rate is a multiplication factor to thery@  data of daily mean wind speed of <175, 175-425-425
in the previous interconnection weights (Sivapragas 700 and >700 km daywere assigned values of 1, 2, 3
and Muttil, 2005). and 4, respectively. In addition, three categoritaia

A Genetic Algorithm (GA) is a stochastic of relative humidity of <40, 40-70 and >70% were
optimization model based on Darwin's concept ofassigned values of 1, 2 and 3, respectively.
natural selection. GA is a robust method for sdagch Back-Propagation (BP) was selected as the supdrvis
for the optimal solution of complex problem, altighu  learning method and a Genetic Algorithm (GA) helped
it may not always necessarily obtain the best ptessi finding a suitable network, i.e., the number of deid
solution (Goldberg, 1989). In a GA, the populatimn layers, the number of nodes in each hidden layertiza
strings is used to represent possible problemisolsit  transfer functions to be used for each node.
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To estimate Kp values based on the neuro-genetic
approach, the data sets from Table 1 were used. Thi
able shows Kp values based on the FAO-24 Kp table
for Class A pans under green fetch conditions (¢gse

Class A pans under dry fetch conditions (case ll),
Colorado sunken pans under green fetch conditions
(case Ill) and Colorado sunken under dry fetch
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Table 2: Comparison of statistical indices in estimg Kp values using different methods

Methods R RMSQ MAE (%) MARE (%) MXARE (%) DEV (%) NE > 2%
Class A pan under green fetch

condition (case I)

Cuenca (1989) 0.9601 0.0327 2.69 4.41 13.25 331 27
Snyder (1992) 0.9745 0.0262 212 3.29 9.84 248 21
Allen (1998) 0.9822 0.0235 2.72 4.07 11.46 2.85 6 2
Raghuwanshi and Wallender (1998) 0.9796 0.0235 88 1. 2.97 8.46 2.22 21
Neuro-genetic (present study) 0.9901 0.0167 1.40 2.29 6.18 1.63 15

Class A pan under dry
fetch condition (case Il)

Allen (1998) 0.9849 0.0383 3.11 5.02 12.90 3.20 2 3
Abdel-Wahedand Snyder (2008) 0.9868 0.0194 1.59 2.87 10.00 2.18 16
Neuro-Genetic (Present study) 0.9877 0.0188 1.45 2.42 8.10 2.05 17

Colorado sunken pan under green

fetch condition (case Ill)

Allen (1998) 0.9840 0.0545 4.40 5.20 11.59 3.01 27
Neuro-Genetic (Present study) 0.9921 0.0201 1.72 2.27 7.64 1.62 13
Colorado Sunken pan under dry

fetch condition (case V)

Allen (1998) 0.9851 0.0425 3.32 4.48 11.74 312 29
Neuro-Genetic (present study) 0.9890 0.0246 1.84 2.62 7.77 231 20
NeuroGenetic Optimizer (demo version) was Seven  statistical indices, including the

selected as the learning tool. The default paranmete  determination coefficient @ root Mean Square Error
neural networks and genetic algorithm as provided b (RMSE), Mean Absolute Error (MAE), mean absolute
the NeuroGenetic Optimizer software package wereelative error (MARE), maximum absolute relativeoer
selected in this study as follows. The input antpou  (MXARE), standard deviation of absolute relativeoer
data scaling were between -1 and 1 and 0.1 and 0.BDEV) and the number of samples with an error great
respectively. The multiple hidden layers with mastim  than 2% (NE> 2%) were used to evaluate the
of 2 hidden layers and the maximum number of nodeperformance in estimating Kp values. The rReasures
in each hidden layer of 128 were selected. Threehe degree to which two variables are linearlytegland
transfer functions (Tan-Hyperbolic, Logistic andheéar  should optimally be one. The RMSE is a measuréief t
transfer functions) were used. The initial weightsre  residual standard deviation and should be as sasall
randomly assigned between -0.3-0.3. Learning rates possible (optimally 0). The MAE, MARE and MXARE
between 0.1-0.4 for the first and second hiddeer®y measure the difference between actual and estinkqted

and between 0.1-0.2 for the output layer were Aet. values and should be as small as possible (opifdjll
momentum between 0.1-0.2 was set.

A population size (the number of chromosomes in DISCUSSION
the population) of 200 was used. The percent sefect
method with 50% selection was chosen. That is, the The statistical indices in estimating Kp values
networks with fitness greater than average will beusing neuro-genetic and previous equations fostaty
selected to survive while those less than averalié@ev  cases are presented in Table 2. For case |, the-neu
dumped into the bit bucket. Since this system wses genetic approach gave a higher performancé %R
selection technique that drops poor chromosomes, th0.9901, RMSQ = 0.0167, MAE (%) =1.40, MARE (%)
population needs to be refilled every generation. |1 =2.29, MXARE (%) = 6.18, DEV (%) = 1.63 and NE>
this study, a cloning technique, whereby the swmdv 29 = 15) in estimating Kp values than other methods
of the selection process are cloned to refill theFor case Il, although the values ¢f [®.9877) and NE>
population, was used. The tail swap mating metho®% (17) of neuro-genetic approach were lower than
(also known as crossover) was selected. Hence, those of the equation proposed by Abdel-Wahed and
system picks a cut point and exchanges genetignyder (2008) other statistical indices (RMSQ =
material between the cut point and the end of the.0188, MAE (%) = 1.45, MARE (%) = 2.42, MXARE
string of the parents, essentially swapping tals. (%) = 8.10 and DEV (%) = 2.05) were better.
random exchange mutation method with a probability  For cases Il and IV, the neuro-genetic approach
of 0.25 was selected. With this method, two points obviously outperformed the equations proposed by
a given chromosome string are randomly selected angdlilen (1998). It gave R= 0.9921, RMSQ = 0.0201,
exchanged their values with a probability of 0.25. MAE (%) = 1.72, MARE (%) = 2.27, MXARE (%) =
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7.64, DEV (%) = 1.62 and NE> 2% = 13 for case Ill Frevert, D.K., Hil, R.W. and B.C. Braaten, 1983.

and R = 0.9890, RMSQ = 0.0246, MAE (%) =1.84, Estimation of FAO evapotranspiration coefficients.

MARE (%) = 2.62, MXARE (%) = 7.77, DEV (%) = J. Irrig. Drain. Engrg., 109: 265-270.

2.31 and NE> 2% = 20 for case IV. Goldberg, D.E., 1989. Genetic Algorithms in Search,
The structures of BP neural networks (# inputlaye  QOptimization and Machine Learning. 1st Edn.,

nodes-1st hidden layer nodes-2nd hidden layer natles Addison-Wesley, Reading, MA., ISBN:

output layer nodes-the hidden layers being grouped 9780201157673, pp: 412.

type of transfer function) obtained by the GA fases |- ysseini M. M. S.M. Amin. AM. Ghafouri and

IV, respectively, were (3-17 nodes with Lo, 5 with5 M.R.'TaISatabaei, 2011. 'Application of soil and

with Li-50 with Lo, 28 with T, 46 with Li-1), (3-4&vith . -
X g : ' y . water assessment tools model for runoff estimation.
Lo, 4 with T, 24 with Li- 95 with Lo, 27 with T, @ith Am. J. Applied Sci, 8 486-494. DOI:

Li-1), (3-5 with Lo, 6 with T, 5 with Li-15 with Lp2 .
: I i . ) 10.3844/ajassp.2011.486.494
with T, 2 with Li-1) and (3-15 with Lo, 49 with T4 Kumar, M., N.S. Raghuwanshi, R. Singh, W.W.

with Li-47 with Lo, 24 with T, 3 with Li-1), respégely. ) Lo
Lo, T and Li stand for Logistic, Tan-Hyperbolic and Wallender and W.O. Pruitt, 2002. Estimating

Linear transfer functions, respectively and the GA evapotranspiration using artificial neural network.

always selected Tan-hyperbolic for the output node. J. Irrig. Drain. Engrg. 128: 224-233. _
Phene, C.J. and R.B. Campbell, 1975. Automating pan
CONCLUSION evaporation measurements for irrigation control.

Agric. Meteor., 15: 181-191. DOI: 10.1016/0002-
In this study, a Neuro-genetic approach was 1571(75)90003-5
successfully applied to estimating Kp values fer¢ases Raghuwanshi, N.S. and W.W. Wallender, 1998.
of Class A pans under green fetch conditions, Chass Converting from pan evaporation to
pans under dry fetch conditions, Colorado sunkews pa evapotranspiration. J. Irrig. Drain. Eng., 124: 275
under green fetch conditions and Colorado sunkes pa 277.

under dry fetch conditions. A comparative analysisSivapragasam, C. and N. Muttil, 2005. Dischargmgat
showed that this approach fairly outperformed the  curve extension ? A new approach. Water

previous proposed Kp equations in estimating Kpes Resources Mana., 19: 505-520.
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