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Abstract: Problem statement: The pan evaporation coefficient (Kp) is used to convert pan 
Evaporation (Ep) to reference Evapotranspiration (ETo) due to its simplicity and suitability for 
locations with limited availability of meteorological data. Approach: This study presents the use of 
neuro-genetic approach for estimating Kp for Class A pan and Colorado Sunken pan under green and 
dry fetch conditions. Results: Representative values were used to represent the category data, i.e., 
wind run and relative humidity. It was found that the genetic algorithm helped automatically search for 
the optimal structure of the back-propagation network, replacing the very tedious trial and error 
approach. Conclusion: A comparative analysis showed that the neural-genetic approach fairly 
outperformed previous proposed Kp equations for both green and dry fetch conditions.  
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INTRODUCTION 
 
 Hydrological extreme events are typically defined 
as floods and droughts. Floods are associated with high 
rainfall and may cause dam break events (Tingsanchali 
and Chinnarasri, 2001) while drought is associated with 
lack of precipitation and high evaporation. For 
modeling purpose and decision making, it is therefore a 
need for a study to estimate hydrological data for areas 
with lack of data and different climatic conditions 
(Hosseini et al., 2011).  
 Pan Evaporation (Ep) has become a widespread 
method for estimating reference Evapotranspiration 
(ETo) due to its simplicity, low cost, ease of data 
interpretation and application and suitability for 
locations with limited availability of meteorological 
data (Phene and Campbell, 1975; Trajkovic, 2009). To 
convert Ep to ETo, a pan coefficient (Kp) is necessary. 
Although the FAO-24 Kp Table 1 provides Kp values, 
several Kp equations have been developed for 
estimating Kp values (Cuenca, 1989; Snyder, 1992; 
Allen, 1998; Raghuwanshi and Wallender, 1998; 
Abdel-Wahed and Snyder, 2008). Those equations were 
developed for two types of pan, i.e., Class A and 
Colorado sunken pans and for two conditions, i.e., a 

pan placed in a short green cropped area and a pan 
placed in a dry fallow area.  
 Several Kp equations have been suggested based 
on the FAO-24 Kp tables using linear, nonlinear and 
indicator regression techniques or combinations thereof. 
There are a few regression equations for predicting the 
Kp values for a FAO Class A pan placed in a short 
green cropped area based on the FAO-24 Kp Table 
(Frevert et al., 1983; Cuenca, 1989; Snyder, 1992; 
Raghuwanshi and Wallender, 1998).  
 Cuenca (1989) modified Kp equation as proposed 
by Frevert et al. (1983) by rounding off the coefficients 
of the equation. Snyder (1992) used the representative 
values to represent the category data of wind run and 
relative humidity and applied a least-squares regression 
approach for predicting Kp values.  
 To develop a Kp equation for Class A pan placed 
in short green cropped areas, Raghuwanshi and 
Wallender (1998) applied the indicator regression 
technique, which is a widely accepted approach for 
developing a relationship between categorical and 
quantitative data.  
 Allen (1998) and Abdel-Wahed and Snyder (2008) 
proposed Kp equations for an FAO Class A pan placed 
in a dry fallow area.  
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Table 1: Pan coefficients for different pan siting and environments (Cuenca, 1989)  
        Colorado sunken  Colorado sunken pan 
  Class A pan under green Class A pan under dry  pan under green   under dry fetch 
  fetch condition (case I) fetch condition case II) fetch condition (case III) condition (case IV) 
  RH mean (%)  RH mean (%)  RH mean (%)  RH mean (%) 
 Windward  ---------------------------- ----------------------------- ----------------------------- -------------------------------- 
Wind speed side Low Medium High low Medium  High  Low Medium  High Low  Medium  High  
(km/day) distance < 40 40-70 > 70 < 40 40-70 > 70 < 40 40-70 > 70 < 40 40-70 > 70 
Light 1 0.55 0.65 0.75 0.70 0.8 0.85 0.75 0.75 0.80 1.10 1.10 1.10 
< 175 10 0.65 0.75 0.85 0.60 0.70 0.80 1.00 1.00 1.00 0.85 0.85 0.85 
(< 2 m sec−1) 100 0.70 0.80 0.85 0.55 0.65 0.75 1.10 1.10 1.10 0.75 0.75 0.80 
 1000 0.75 0.85 0.85 0.50 0.60 0.70 - - - 0.70 0.70 0.75 
Moderate 1 0.50 0.60 0.65 0.65 0.75 0.80 0.65 0.70 0.70 0.95 0.95 0.95 
175-425 10 0.60 0.70 0.75 0.55 0.65 0.70 0.85 0.85 0.90 0.75 0.75 0.75 
(2-5 m sec−1) 100 0.65 0.75 0.80 0.50 0.60 0.65 0.95 0.95 0.95 0.65 0.65 0.70 
 1000 0.70 0.80 0.80 0.45 0.55 0.60 - - - 0.60 0.60 0.65 
Strong 1 0.45 0.50 0.60 0.60 0.65 0.70 0.55 0.60 0.65 0.80 0.80 0.80 
425-700 10 0.55 0.60 0.65 0.50 0.55 0.65 0.75 0.75 0.75 0.65 0.65 0.65 
(5-8 m sec−1) 100 0.60 0.65 0.70 0.45 0.50 0.60 0.80 0.80 0.80 0.55 0.60 0.65 
 1000 0.65 0.70 0.75 0.40 0.45 0.55 - - - 0.50 0.55 0.60 
Very strong 1 0.40 0.45 0.50 0.50 0.60 0.65 0.50 0.55 0.60 0.70 0.75 0.75 
> 700 10 0.45 0.55 0.60 0.45 0.50 0.55 0.65 0.70 0.70 0.55 0.60 0.65 
(> 8 m sec−1) 100 0.50 0.60 0.65 0.40 0.45 0.50 0.70 0.75 0.75 0.50 0.55 0.60 
 1000 0.55 0.60 0.65 0.35 0.40 0.45 - - - 0.45 0.50 0.55 

 
 Allen (1998) also proposed two Kp equations for 
Colorado sunken pans surrounded by green and dry fetch 
conditions. All of the existing Kp equations are the 
function of the daily mean Relative Humidity (RH,%), 
daily mean wind speed at 2 m height (U2, km/day) and 
fetch distance (F, m). The main differences are the 
selected representative values of each range of wind run 
categories and relative humidity categories.  
 The neuro-genetic approach, a hybrid of neural 
networks and genetic algorithms, is relatively new for 
predicting pan coefficient values. The main function of 
the neuro-genetic approach is still based on neural 
networks, while the genetic algorithm helps 
automatically search for the optimal structure of the 
network. Only two related research projects for the 
estimation of reference evapotranspiration factors were 
found in the literature. Trajkovic et al. (2000) applied a 
radial basis function network to estimate the FAO 
Blanney-Criddle factor. Trajkovic et al. (2001) 
estimated the FAO Penman factor using a radial basis 
function network.  
 This sutdy presents the application of the neuro-
genetic approach to estimating pan evaporation 
coefficient values for Class A pans and Colorado 
Sunken pans under green and dry fetch conditions. The 
statistical performance comparison was undertaken 
between this neuro-genetic approach and the previous 
proposed equations.  
 

MATERIALS AND METHODS 
 
 The neuro-genetic approach is a hybrid model 
between Artificial Neural Networks (ANNs) and 
Genetic Algorithms (GAs).  

 The main function of this model is based on ANNs 
while a GA helps to automatically find a suitable 
structure for the network, i.e., the decision variables are 
the number of hidden layers, the number of nodes in 
each hidden layer and the transfer functions used. A 
neuro-genetic process includes two sub-processes: A 
Neural Network (NN) process (an inner iterative loop) 
and a genetic algorithm process (an outer iterative 
loop). Detailed information for neuro-genetic processes 
can be seen in Fig. 1.  
 A typical Back Propagation (BP) neural network 
structure, which includes one input layer, one or more 
hidden layers and one output layer, is shown in Fig. 2. 
Each layer is made up of several neurons and the layers 
are interconnected by sets of weights. The neurons in 
the input layer receive input directly from the input 
variables. The neurons in the hidden and output layers 
receive input from the interconnections. Neurons 
operate on the input and transform it to produce an 
analogue output. The transformation is performed in 
two stages. First, the input from each neuron is 
multiplied by weights and a weighted sum is taken. 
Next, an activation function such as the sigmoid 
function converts such a weighted sum to be the output 
of each neuron, which becomes the input to neurons of 
the succeeding layer.  
 The training of a BP neural network involves two 
stages (Kumar et al., 2002). In the first stage (forward 
pass), the input signals propagate from the network 
input to the output. The calculation of the output is 
carried out, layer by layer, in the forward direction. The 
output of one layer is the input  to  the  following  layer.  
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Fig. 1: Neuro-genetic process 
 

 
 
Fig. 2: Typical BP neural network structure 
 
In the second stage (backward pass), the calculated 
error signals propagate backward through the network, 
where they are used to adjust the weights of the 
connections in order to improve a predefined 
performance measure. Initially, since the weights to the 
interconnections are randomly generated, the difference 
between the predicted and desired output values can be 
large. Learning therefore involves iteratively adjusting 
the connection weights to minimize these differences.  
 There are two parameters of concern for a BP 
neural network: the learning rate (α) and the momentum 
rate (β). The learning rate controls the incremental 
change in the interconnection weights during iterative 
training as a percentage of the difference between the 
desired or target output and the NN computed output. 
Thus, a high learning rate generally results in a larger 
weight change and faster learning. The momentum rate 
is a means to increase the rate of learning and avoid the 
possibility of getting trapped in local optima. The 
momentum rate is a multiplication factor to the change 
in the previous interconnection weights (Sivapragasam 
and Muttil, 2005). 
 A Genetic Algorithm (GA) is a stochastic 
optimization model based on Darwin's concept of 
natural selection. GA is a robust method for searching 
for the optimal solution of complex problem, although 
it may not always necessarily obtain the best possible 
solution (Goldberg, 1989). In a GA, the population of 
strings is used to represent possible problem solutions. 

Each string consists of a number of blocks, which 
represent the individual variables of the problem. The 
variables represented in the string can be processed in 
an evaluation function, or fitness function, which is in 
effect the objective function.  
 GA consists of three basic operations (selection, 
crossover and mutation) involved in manipulating 
strings and moving to a new generation. The selection 
operator is that through which strings are selected for 
inclusion in the reproduction process and for 
participation in the next generation. The fittest strings 
have the highest probability of being used in 
reproduction. The crossover operator permits the 
exchange of genes between pairs of chromosomes in a 
population. This operator offers the possibility of 
good genetic material from different individual strings 
being combined to create an even fitter individual. 
The mutation operator permits new genetic material to 
be introduced to a population. As shown in Fig. 1, 
replacement is used to refill the population that is 
dropped due to poor chromosomes during the 
selection process.  
 

RESULTS  
 
 To estimate Kp values based on the neuro-genetic 
approach, the data sets from Table 1 were used. This 
table shows Kp values based on the FAO-24 Kp table 
for Class A pans under green fetch conditions (case I), 
Class A pans under dry fetch conditions (case II), 
Colorado sunken pans under green fetch conditions 
(case III) and Colorado sunken under dry fetch 
conditions (case IV).  
 The Kp values depends on the fetch distance (F), 
which is quantitative data and two qualitative (or 
categorical) data, i.e., the daily mean Relative Humidity 
(RH) and daily mean wind speed (U). Hence, the 
structure of the neural networks comprised three nodes 
of input layer, i.e., In (F), RH and U and one node of 
output layer, i.e., Kp data.  
 The total data sets are 48 for cases I, II and IV and 
the total data sets are 36 for case III. Those data sets 
were randomly divided into two parts, that is, 90% for 
training and 10% for testing networks. Four categorical 
data of daily mean wind speed of <175, 175-425, 425-
700 and >700 km day−1 were assigned values of 1, 2, 3 
and 4, respectively. In addition, three categorical data 
of relative humidity of <40, 40-70 and >70% were 
assigned values of 1, 2 and 3, respectively.  
 Back-Propagation (BP) was selected as the supervised 
learning method and a Genetic Algorithm (GA) helped in 
finding a suitable network, i.e., the number of hidden 
layers, the number of nodes in each hidden layer and the 
transfer functions to be used for each node.  
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Table 2: Comparison of statistical indices in estimating Kp values using different methods 
Methods R2 RMSQ MAE (%) MARE (%) MXARE (%) DEV (%) NE > 2% 
Class A pan under green fetch  
condition (case I) 
Cuenca (1989) 0.9601 0.0327 2.69 4.41 13.25 3.31 27 
Snyder (1992)  0.9745 0.0262 2.12 3.29 9.84 2.48 21 
Allen (1998)   0.9822 0.0235 2.72 4.07 11.46 2.85 26 
Raghuwanshi and Wallender (1998)   0.9796 0.0235 1.88 2.97 8.46 2.22 21 
Neuro-genetic (present study)   0.9901 0.0167 1.40 2.29 6.18 1.63 15 
Class A pan under dry  
fetch condition (case II) 
Allen (1998)   0.9849 0.0383 3.11 5.02 12.90 3.20 32 
Abdel-Wahed and Snyder (2008)     0.9868 0.0194 1.59 2.87 10.00 2.18 16 
Neuro-Genetic (Present study)   0.9877 0.0188 1.45 2.42 8.10 2.05 17 
Colorado sunken pan under green 
 fetch condition (case III) 
Allen (1998)    0.9840 0.0545 4.40 5.20 11.59 3.01 27 
Neuro-Genetic (Present study)   0.9921 0.0201 1.72 2.27 7.64 1.62 13 
Colorado Sunken pan under dry 
 fetch condition (case IV) 
Allen (1998)     0.9851 0.0425 3.32 4.48 11.74 3.12 29 
Neuro-Genetic (present study)   0.9890 0.0246 1.84 2.62 7.77 2.31 20 

 
 NeuroGenetic Optimizer (demo version) was 
selected as the learning tool. The default parameters of 
neural networks and genetic algorithm as provided by 
the NeuroGenetic Optimizer software package were 
selected in this study as follows. The input and output 
data scaling were between -1 and 1 and 0.1 and 0.9, 
respectively. The multiple hidden layers with maximum 
of 2 hidden layers and the maximum number of nodes 
in each hidden layer of 128 were selected. Three 
transfer functions (Tan-Hyperbolic, Logistic and Linear 
transfer functions) were used. The initial weights were 
randomly assigned between -0.3-0.3. Learning rates of 
between 0.1-0.4 for the first and second hidden layers 
and between 0.1-0.2 for the output layer were set. A 
momentum between 0.1-0.2 was set.  
 A population size (the number of chromosomes in 
the population) of 200 was used. The percent selection 
method with 50% selection was chosen. That is, the 
networks with fitness greater than average will be 
selected to survive while those less than average will be 
dumped into the bit bucket. Since this system uses a 
selection technique that drops poor chromosomes, the 
population needs to be refilled every generation. In 
this study, a cloning technique, whereby the survivors 
of the selection process are cloned to refill the 
population, was used. The tail swap mating method 
(also known as crossover) was selected. Hence, the 
system picks a cut point and exchanges genetic 
material between the cut point and the end of the 
string of the parents, essentially swapping tails. A 
random exchange mutation method with a probability 
of 0.25 was selected. With this method, two points in 
a given chromosome string are randomly selected and 
exchanged their values with a probability of 0.25.  

 Seven statistical indices, including the 
determination coefficient (R2), root Mean Square Error 
(RMSE), Mean Absolute Error (MAE), mean absolute 
relative error (MARE), maximum absolute relative error 
(MXARE), standard deviation of absolute relative error 
(DEV) and the number of samples with an error greater 
than 2% (NE> 2%) were used to evaluate the 
performance in estimating Kp values. The R2 measures 
the degree to which two variables are linearly related and 
should optimally be one. The RMSE is a measure of the 
residual standard deviation and should be as small as 
possible (optimally 0). The MAE, MARE and MXARE 
measure the difference between actual and estimated Kp 
values and should be as small as possible (optimally 0).  
 

DISCUSSION 
  
 The statistical indices in estimating Kp values 
using neuro-genetic and previous equations for all study 
cases are presented in Table 2. For case I, the neuro-
genetic approach gave a higher performance (R2 = 
0.9901, RMSQ = 0.0167, MAE (%) =1.40, MARE (%) 
=2.29, MXARE (%) = 6.18, DEV (%) = 1.63 and NE> 
2% = 15) in estimating Kp values than other methods. 
For case II, although the values of R2 (0.9877) and NE> 
2% (17) of neuro-genetic approach were lower than 
those of the equation proposed by Abdel-Wahed and 
Snyder (2008) other statistical indices (RMSQ = 
0.0188, MAE (%) = 1.45, MARE (%) = 2.42, MXARE 
(%) = 8.10 and DEV (%) = 2.05) were better.  
 For cases III and IV, the neuro-genetic approach 
obviously outperformed the equations proposed by 
Allen (1998). It gave R2 = 0.9921, RMSQ = 0.0201, 
MAE (%) = 1.72, MARE (%) = 2.27, MXARE (%) = 
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7.64, DEV (%) = 1.62 and NE> 2% = 13 for case III 
and R2 = 0.9890, RMSQ = 0.0246, MAE (%) =1.84, 
MARE (%) = 2.62, MXARE (%) = 7.77, DEV (%) = 
2.31 and NE> 2% = 20 for case IV.  
 The structures of BP neural networks (# input layer 
nodes-1st hidden layer nodes-2nd hidden layer nodes- # 
output layer nodes-the hidden layers being grouped by 
type of transfer function) obtained by the GA for cases I-
IV, respectively, were (3-17 nodes with Lo, 5 with T, 5 
with Li-50 with Lo, 28 with T, 46 with Li-1), (3-46 with 
Lo, 4 with T, 24 with Li- 95 with Lo, 27 with T, 6 with 
Li-1), (3-5 with Lo, 6 with T, 5 with Li-15 with Lo, 2 
with T, 2 with Li-1) and (3-15 with Lo, 49 with T, 44 
with Li-47 with Lo, 24 with T, 3 with Li-1), respectively. 
Lo, T and Li stand for Logistic, Tan-Hyperbolic and 
Linear transfer functions, respectively and the GA 
always selected Tan-hyperbolic for the output node.  
 

CONCLUSION 
 
 In this study, a Neuro-genetic approach was 
successfully applied to estimating Kp values for the cases 
of Class A pans under green fetch conditions, Class A 
pans under dry fetch conditions, Colorado sunken pans 
under green fetch conditions and Colorado sunken pans 
under dry fetch conditions. A comparative analysis 
showed that this approach fairly outperformed the 
previous proposed Kp equations in estimating Kp values.  
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