

 :ارائه شده توسط

ه فا �� سايت ��

� مرجع �� ه شده جديد�� �� مقا�ت ��

ت معت � �# از ن%$

http://tarjomefa.com/

INTRODUCTION

SEMoLa (Simple, Easy to use, MOdelling LAnguage), developed by Francesco Danuso at the
Department of Agricultural and Environmental Sciences of the University of Udine (Italy) with
many contributions by other researchers, is a simulation and modelling environment to create
computer models for dynamic systems. It is logically formed by three components:

a) a non-procedural syntax for model coding;

b) a command set to create and evaluate computer simulation models;

c) a GUI environment to manage the simulation environment.

The commands allow to document the model, to display simulation results, to perform
sensitivity and uncertainty analysis. The management of the modelling environment is
accomplished by commands for set, display and clear the variables of the modelling
environment, for quick editing the model files, to create files for multiple simulations, to display
SEMoLa files and to log the working session. An error handling system and an extensive on-
line help is also available.
SEMoLa is a simple simulation meta-language. Model coded in SEMoLa are translated into
Basic or C++ code and then compiled into executable files. The Basic code is to be compiled
by the Power Basic Console Compiler ١٫٠ or higher (PowerBasic); the C++ code is to be
compiled by MinGW ٣-٢٫٠٫٠
A package of tools like neural network generation, regression analysis, model units checking,
has been developed to extend SEMoLa capabilities and offer to the user a more powerful
modelling and analysis environment

Exogenous variable files (input variables) can be loaded and processed if requested. Multiple
simulation runs (batch simulation) may be performed in relation to different initial values,
parameter sets, exogenous variables or event scenarios (or combinations). In the simulation
phase it is possible to obtain the sensitivity analysis, the parameter calibration (Gauss -
Newton optimisation method) and the model validation against independent data.
SEMoLa allows the user to represent the system aspects in a conceptual rather than
computational order. This makes the code more readable and the errors easier detectable. A
SEMoLa model may directly produce presentation tables and lists of variables and
parameters by using the specific commands.

The commands for compilation and simulation derive from the command simula (Danuso,
١٩٩٢).

FEATURES OF SEMoLa

• Non procedural programming language for dynamic models

• Generation of stand-alone, self-calibrating model executables

• Numerical integration of ordinary differential equations (euler, trapezoidal)

• Complete handling of the exogenous (input) variables

• Event handling capability (conditional, periodical, scheduled)

• Multiple simulations (batch simulations)

• Parameter calibration and optimisation (Gauss-Newton);

• Multiple calibration

• Sensitivity analysis;

• Model validation;

• Support for simulation experiments

• Support for uncertainty analysis and Monte Carlo simulations

• Errors checking in compilation and in run-time phases

• Model documentation (tables, listings, where used)

• Model structuring by sections

• Management of the modelling environment

• Automatization of procedures with command scripts

• Help for language syntax, procedure and commands

• Log files for SEMoLa sessions and model runs

• Multiple and non-linear regression

• Neural networks training and building with easy integration in simulation models

• Neural networks available as Basic and C++ source code

• Model code editor with specific highlighting

• Semantic and formal automatic debugging

• Automatic units (dimensional) consistency check

• Automatic documentation building for each model, in *.chm format

• Simulation experiments and scenario analysis

• Random variables generation from multiple distribution (normal and non-normal)

• User defined functions generation and management

• Fuzzy logic expert system development as user functions

• Statistical analysis on observed and simulated data

• Observed and simulated data plotting

SEMoLA FRAMEWORK

SEMoLa is a modelling framework for knowledge integration. It consist of

a) a non-procedural syntax for model coding (SEMoLa language);

b) a set of commands to perform all tasks in both intaractive and batch
(script) mode;

c) a GUI environment to manage the simulation environment

d) a built-in database management system (SemData)

e) a plotting capability (SemPlot, based on Gnuplot)

f) a specific editor (SemEdit)

A SEMoLa model is a text file in which every row completely describes a
system component.

The framework

The console version

The SEMoLa editor (SemEdit)

COMMANDS

The tasks of SEMoLa can be obtained using dialogs of the GUI (Graphical user interface) or
by commands. Commands are instruction given to the application to require a certain action.
Commands can be used interactively: e.g., the user write the text of the command with its
options, press Enter, see to the results of the action and continues the procedure with other
commands. Commands offer the advantage to be used also in a batch mode, that is, the user
write a list of commands (script) in a file and submit all the commands of the procedure in one
step. Non need to wait for the result of each command. The procedure can be also repeated
many times, even changing the input parameters.

The dialog of SEMoLa to input and manage the commands:

Command files

Using the command dialog above it is possible to create, manage and use lists of
command, saved as command files (script). Command files are list of commands in a
text file with cmf as name extension.

To create a command file from previously issued commands (those in the central
window of the command dialog), insert a name in the combobox on the top left and
press the button Save.

To edit a command file, select the command file in the combobox and press Edit.

To run a command file, select the command file and press Run.

Command files can be also managed by the commands csave and crun.

A command file can be launched also with parameters that can be used in the script
code as macro ٪٣٪ ,٪٢٪ ,%١&, etc.

Language

A SEMoLa model is a text file formed by lines, each pertaining to a system
element. Every line is identified by a letter as first word of the line. The
SEMoLa compiler recognises nine types of statements: state declaration (S),
auxiliary equations (A), rate equations (R), exogenous variable declaration
(E), event declaration (V), parameter value assignment (P), run time options
($), section identifier (@) and comment line (‘) (Table ١).

The model code may be structured into logical sections. A section of the
model is to be thought as a sub-system dealing with a particular material type
of the system. The at-sign (@) declares a model section to be included in the
current model.

Structure of the code line

 id name=expression options label
(unit)

Meaning

class object value/relationship property
metadata

Example model

Simulation results

Satements of the SEMoLa language

State S declares a state of the system and initial value

Auxiliary A treats endogenous and exogenous information

Rate R declares a rate of the system, source and sink

Exovar E declares a needed exogenous variable (input)

Event V declares events and related actions on model

Parameter P declares value or expression for a parameter

Group G declares a group of elements

Options $ options to be used as default in run-time phase

Section $ indicates a new model section

Comment ‘ comments in the SEMoLa code

DATA STRUCTURES

SEMoLa uses the following data structures:

١) Current dataset : a table of data that can be saved on disk. It is like a table, with rows (time
steps or observations or records) and columns (variables). Variables can be of types: float
(double), integer , string .

٢) Ambient variables : are variables created and existing only in the time of a session. At the
exit they are lost, unless they are converted to the current dataset and saved. They can be of
scalar , string and matrix types.

٣) Files on disks

AMBIENT VARIABLES

Ambient variables are variables created and existing only in the time of a session. At the exit
they are lost, unless they are converted to the current dataset and saved. They can be of
scalar (a single numerical value, double precision), string (alphanumerical characters) and
matrix (mono and bi dimensional arrays of double precision numbers) types and are created
and managed by the commands scalar , string and matrix , respectively.
Many numerical and statistical commands, after been issued, leave in the ambient some
specific variables that can be displayed again or reused by the next commands. These values
are always rewritten by the successive use of the same commands. For example, the
command
. summarize varname
generates a number of ambient variables that can be seen by:

. sca list
_nobs = ٢٠٦
_mean = ٣٣
_sum = ٦٧٩٨
_sd = ٠
_MS = ٠
_min = ٣٣
_max = ٣٣

Examples:

. scalar k= ١٠ (creates a new scalar variable and set its value to ١٠)
. scalar b= ٢ (creates another scalar variable and set its value to ٢)
. scalar c=b*k (c is created and equals to ١٠)
. string abc=”SEMoLa”
. string cde=mid(”SEMoLa”, ٢،٣) (the value of cde is “EMo”)

Uses

With ambient variables is possible to:

١) perform calculations, even by complex expressions. Example: sca x=sin(١٠-
tan(٥٠))/(sqrt(٢٥)) (x = -.١٤٩٨٧٥٦٥٩٢١٨٤٥٤)

٢) re-use the results of the previous commands;
٣) perform matrix operations: Examples: mat A=B·C (matrix product); mat

C=A·trn(A) (multiply a matrix by its transpose)
٤) use ambient variables in the generation of new variables of the current dataset:

a. scalar a= ٥ (define the ambient variable a)
b. generate newvar=_i*a (generate a new column with values

٥،١٠،١٥،٢٠،٢٥, ...; _i is the running index of rows);
٥) convert matrix into dataset by the command matrix set;
٦) convert a dataset to an ambient matrix by the command matrix get;
٧) Use the macro substitution. A macro in a expression or command is identified by the

leading percent (%):
a. scalar a= ٥
b. string b=”Myfile”+str(a)+”.csv” (concatenate strings)
c. use %b (the command loads the file

Myfile ٥.csv)

� مقا�، از �ی �
ه مقا�ت ا �� ن سايت شده �� ��ه فاراي �� در PDFكه #� فرمت ميباشد ��

ان قرار � ايل ميتوانيد #� 6يک �� روی د3ه های ز�� گرفته است. اختيار -, عز�� از در صورت :�

اييد:سا�� مقا�ت � استفاده :� ن<�

ه شده از �� � مقا�ت �� �
 ه فا ؛ مرجع جديد�� �� ت معت<� خار�B سايت �� �# ,Dن

http://tarjomefa.com/
http://tarjomefa.com/%D8%AF%D8%A7%D9%86%D9%84%D9%88%D8%AF+%D9%85%D9%82%D8%A7%D9%84%D9%87+isi+%D8%A8%D8%A7+%D8%AA%D8%B1%D8%AC%D9%85%D9%87+%D8%B1%D8%A7%DB%8C%DA%AF%D8%A7%D9%86
http://tarjomefa.com/%D8%AC%D8%B3%D8%AA%D8%AC%D9%88-%D8%A8%D9%87-%D8%B1%D9%88%D8%B4-%D8%AA%D8%B1%D8%AC%D9%85%D9%87-%D9%81%D8%A7
http://isidl.com/

