

 :ارائه شده توسط

ه فا �� سايت ��

� مرجع �� ه شده جديد�� �� مقا�ت ��

ت معت � �# از ن%$

http://tarjomefa.com/

REENGINEERING

and

REENGINEERING PATTERNS

Daniel Gjörwell
dgl99001@student.mdh.se

 Staffan Haglund

shd99004@student.mdh.se

Daniel Sandell
dsl99001@student.mdh.se

The Department for Computer Science and Engineering
Mälardalens Högskola

2002-02-24
Västerås

Table of Contents Page
1. Preface 1

2. Abstract 1

3. The History of the Reengineering Concept 2

4. Short Introduction to Reengineering 3

5. Reverse Engineering

5.1. Introduction 4
5.2. Advantages 4
5.3. Problems 4

6. Analysis and Redesign

6.1. Introduction 5
6.2. Analysis 5
6.3. Redesign 6

7. Forward Engineering

7.1. Introduction 7
7.2. Modularization 7
7.3. Implementation 7
7.4. Testing 7

8. Differences between Design and Reengineering Patterns

8.1. Design Patterns 8
8.2. Reengineering Patterns 9
8.3. Conclusion 10

9. Benefits of the RP approach

9.1. Introduction 11
9.2. Project Understanding 11
9.3. Resource Effiency 13
9.4. Late Reengineering 13

10. Pattern Navigation 14

11. Tools 15

12. Standard methodologies 18

13. Summary and notes 20

References 21

1. PREFACE

We have made a report about reengineering and reengineering patterns. The report is part of
the course Object Oriented Programming fk at Mälardalen University. At the beginning, when
we choosed the subject reengineering patterns, we did not have any specific knowledge about
what it actually meant. We started to search for information at the Internet, but it wasn’t so
much information there as we had hoped, most of the information were similar or not the kind
of information that we were looking for. Finally, we located some sites that were of interest to
us in our work.

When we had read some articles and publications we started to understand what reengineering
and reenginering patters really is. By discussing with each other in the group we found
specific areas that we thought were particulary interesting. Now, when we knew a little bit
more about reengineering and reegnineering patterns, we decided to begin writing our report.

Because the time of the project have been limited and that it has been hard to find information
it was difficult to pass the deadline. But even if we think it has been quite hard we also think
that we have learned a lot about the concept of reengineering.

2. ABSTRACT

Reengineering and Reengineering patterns is a relatively new concept that has begun to make
an impact on the software engineering sociaty. By shifting resources towards the restructuring
of old legacy software systems rather than focusing on new software development the
businesses would and have been able to save precious time and resources. Even though the
benefits of this approach is clear, the difficulties that follows with the concept, together with
inexperience and the lacking of appropriate tools make the reengineering of software systems
a difficult but interesting subject.

3. THE HISTORY OF THE REENGINEERING CONCEPT

In early years of the information revolution the need for reengineering was not acknowledged
by the wider community. Instead, attention was directed towards the discovery of new ways
of creating both better hardware and better software. Methodologies that were concerned with
how to engineer the development of new systems where published, cheered and disposed in
an ever increasing rate. Almost no attention were given to the old systems that were getting
more and more outdated. In addition, the businesses where changing rapidly and with them
came the need for appropriate information software. This became known as ‘software
shortage’; since there always seemed like newly devoloped software where not good enough
to accommodate the business needs.

Then, in the early 90’s the focus of system devolopment changed very rapidly from the
development of new software to the reengineering of old ‘legacy’ systems (systems developed
over time and in need of maintainance). The fact is, that so much attention where given to
reengineering that entire businesses where cought up in the excitement and had their entire
business structure reorganized according to the newly developed reengineering methodologies
and patterns that had emerged. Reengineering was the word of the day and the reengineering
consultants where having a field day [BPR 99].

But soon it became appearant that the reengineering of both business and it’s software where
not as easy as the consultants had first believed. Over half of the reengineering processes of
the time failed, mostly due to inexperience and lack of customer involvement. With these
failures followed huge costs for the companies and soon the reengineering boom was over,
and with it the interest in reengineering devolopment [BPR 99].

Still, almost 80% of a business information system budget costs comes from the maintainance
of old legacy systems. That means only 20% of the total cost can be related to the
development of new systems [SR]. This shows that reengineering, the reorganization and
redesign of a system (or business), is very important; since if these costs can be reduced,
much will be gained for the software user. This fact has contributed to the return of an active
reengineering research community, and as we enter the 21st century we see that reengineering
is once again marching forward into the frontlines of software engineering.

4. SHORT INTRODUCTION TO REENGINEERING

Reengineering concerns the examination of the design and implementation of an existing
legacy system and applying different techniques and methods to redesign and reshape that
system into hopefully better and more suitable software.

This process is by no means an easy task, since legacy systems may have come a long way
from the state in which it was first concieved and implemented. Updates and the adding of
new functionality may cause a lack of proper and updated documentation, especially if the
system is entrusted to people not skilled in the reengineering way of thinking.
Also, maintainability may suffer as the source code becomes flooded with new ways of
communication; and the breaking of encapsulation of objects in favour for an easy way to
some immiediate goal may lead to code so complex, it is almost unmaintainable .

The reengineering team must be able to see through the dense jungle that often characterize a
legacy system, and find those parts that still has a meaning in the final system. Taking such
decisions must be done with great care and great thought, since the reengineering process is
about taking care of the end users current and future needs; as well as ensuring a quick and
easy transition to the new system. If the entire system is redesigned and implemented then we
don’t have a reengineering process, but a pure software engineering process with an end
product probably having the need for extensive user training.
You could therefore say that when reengineering, you try to change as little as possible while
still ensuring that fundamental aspects like maintainability, userability, functionality and other
requirements are still addressed in a proper way.
This gives us our main paradigm in reengineering:
 “Change, but change as little as possible.”

Figure 1: The Phases of the Reengineering Process

In order to get a more comprehensive view on the Reengineering of legacy systems we will
have to look at the parts that define the reengineering process: the reverse engineering phase,
which is concerned with the extraction of elements and information from an existing system.
The phase that concerns the analysis and redesign takes the data obtained in the reverse
engineering phase and tries to identify the aspects that may be reused and the parts that need
to be replaced or redesigned. This phase is also concerned with the designing the final system.
Finally we have the forward engineering phase, which addresses the implementation of the
reengineered system other aspects vital to the extension of the software life-cycle [REFITS
94].

5. REVERSE ENGINEERING

5.1 Introduction
Reverse engineering were at the beginning used for analysing hardware to discover its design
but is nowadays equally used in software reengineering. Reverse engineering generally seeks
to recover information from a low level of abstraction to a higher level, such as finding design
information from source code.

Reverse engineering is the first stage in the reengineering process to explore the software
system at hand, in an effort to document the systems advantages and flaws and to find
reusable components from the software. If reverse engineering is used alone then it does not
involve modifying the software system.[FAMOOS99]

Here are some advantages and problems with using reverse engineering according to
[WHRES96].

5.2 Advantages
It can both mean the development of never existing design documents and also the recovery
of information that has been lost over the years. Recovering information from old software
systems is very important, particularly if the systems is to be maintained by maintenance
engineers who did not develop the system. Such a team would really be having an almost
impossible task ahead of them if the reverse engineering phase was not a part of the
reengineering process.

In software reuse, one of the key issues is the definition and development of reusable
elements such as objects, software components and parts of the system documentation. With
reverse engineering it is possible to provide different kinds of system documentation and also
identifying reusable component that exist in the system.

The major goal of using reverse engineering is quality improvements of the system but also
the minimization of expenditures and software reuse facilitation.

5.3 Problems
Here are some problems that have to be solved when using reverse engineering:

One problem is that the source code can be poorly structured and design specifications
missing or be incomplete. Documentation of the system could be out of date or even not exist
at all. Other problems are the incorporating of modules and the module complexity.

When a system has been developed with inconsistent principles it often makes it difficult to
work with. When reverse engineering, a large amount of source code usually has to be
examined, and based on insufficient knowledge about the program or even without any
system documentation at all it may need extensive research of the system structure.

There are efficient tools that supports the reverse engineering process but they suffer from the
fact that they are unable to extract sufficient information from the available sources (like
source code). So the best way to solve these problems is to combine automatic tool assistance
with human expertise support when the tools reach their limits.

6. ANALYSIS AND REDESIGN

6.1 Introduction
This is the second phase of a reengineering process [BPSARLSS94]. The phase is closely
connected with the usual analysis and design phases seen in ordinary software engineering
projects; but with the difference that in a reengineering process, the old system already has a
design structure and is therefor putting its own features and constraints on the new design.

6.2 Analysis
The analysis of a legacy system is in our opinion the most important part of the reengineering
process. This is due to the fact that without a proper analysis and thereby a proper
understanding of the software you will not be able to complete your project with a satisfactory
result. The extrapolation of the costumer and/or user need is vital to get a clear picture of the
final product and the benefits and drawbacks of that software.

In the analysis, the reengineering team will begin by identifying these needs and reshape these
into highly specified requirements. Getting these requirements right from the beginning of the
project is important, as every step in a reengineering chain usually causes the costs to increase
[FAMOOS99]. This is a common problem in software engineering and the reengineering
model is no exception.

There is also the fact that some projects doesn’t get enough benefits from the reengineering to
be cost-effective. Most methodologies used in reengineering projects have a cost versus
benefit stage in which the team analyse this aspect of the project [FAMOOS99][RM]. If it
turns out that the changes is either too small to make a difference in the overall system or too
big to implement in a reasonable amount of time or that the cost of an extensive change in
implementation would be too high, then the team may actually need to reanalyse the project
once again. Either it will turn out to be a case where the project actually has little or no use; or
the team may have missed some information in the previos stages that would cause the scale
to tip in favour of a continued reengineering process. According to some sources, a cost vs.
benefit stage is almost a must-have in a reengineering process [RM]. This can also be seen in
the Standard Methodologies chapter later in this report, where the cost/benefit step is used
extensively.

Like in ordinary software analysis the results must be carefully monitored and documentated.
This is especially important if the analysis has revealed new functionality requirements. A
well documented analysis does not only contribute to an easier design and implementation of
the new system but also provides useful data to a development team in the future.

After the requirements have been specified, the team may look at the redesign of the legacy
system. Redesigning a legacy system means that the team will try to change that system
according to the analysis results.

6.3 Redesign
Redesign is the application of the analysis results on an existing design, with the addition of
new design elements to incorporate these changes into the system functionality. Redesign has
much in common with the design phase of an ordinary software engineering project. The
difference lies in that the design of the reengineered system must consider the old design
elements and how these will be affected by a design change.

Redesigning is sometimes difficult since it may be a serious conflict between the new design
structure and the original design. If the designs proves to be too incompatible, then it comes
down to choosing whether or not to change the entire design or try a different approach
(remember paradigm 1). If the designs on the other hand fit together then the implementation
of the new software will probably be easy and the time needed to get the software delivered
will be shorter. In either case, the design of the new system must be very careful and well
documented, just as in the analysis stage. This is especially try if the changes includes
changes to interfaces, both towards other software parts or other forms of end-users
[FAMOOS99].

If the design follows the object-oriented approach, careful consideration must be placed on
the classes and their interaction as well as the interaction between the application and the end-
user. The team should generally try to minimize changes to the interfaces. Since such changes
may cause the software to be incompatible with the environment; thereby causing a need for
updates on those systems as well [FAMOOS99]. Such design will increase the cost for the
costumer and lead to disadvantages for that business in the long term.

Another reason to limit the changes to interfaces are that in our view; human end-users are not
keen on changes, especially if the interfaces has changed very little over a long period of time.
Long educating times can quickly reduce both the user interest in how the software should be
used, as well as causing them to abandon the system entirely (maybe even in favour for the
old one).

7. FORWARD ENGINEERING

7.1 Introduction
Forward engineering is the same as the usual process of software engineering, but it have
another name so that it can be more precisely seperated from reverse engineering and
reengineering. It uses the new design that have been made during the analys and design phase
to progressively move from high level design to low level design and implementation.

Forward engineering can be done in three steps [BPSARLSS94]:

7.2 Modularization
It is a process to splitt data, construct application layers and to produce groups of classes that
facilitates the same functionality in order to produce reusable and exchangable elements
[BPSARLSS99]. The results of modularization are reduced program size and reduced
complexity. And if a program is not so big and not so complex it also means that it will be
easier to maintain the program.

7.3 Implementation
During the implementation of the program it is important not to build too big or too small a
class. One basic principle is that a class should implement one single concept. If a class
implements more than one concepts, then the class probably have low cohesion measurements
because often these concepts could have been implemented separately. If a class does not
implement one single concept by itself, it means that the concept is implemented between
several classes and is probably tightly coupled to these [FAMOOS99] . The forward
engineering must conduct it’s own low-level design in such a way that the cohesion and the
coupling is kept on a level that enables reuse and maintainability.

7.4 Testing
Testing is made to find errors that possibly could occur during program execution and also to
improve things that already works (optimization). Some test scenarios can be planned in
advance, usually for those parts that are fundamental for the program. Such test scenarios are
usually designed and implemented during the later phases of the redesign step or early in the
forward engineering phase.

Test persons can also be used to test the program, the persons who tests the program can have
different experience of working with that kind of software and get different test results. These
results can be used to improve the user interface and to find errors that the engineers did not
find in their original tests.

8. DIFFERENCES BETWEEN DESIGN PATTERNS AND
 REENGINEERING PATTERNS

8.1 Design patterns
What is a design pattern? A design pattern describes a common problem that we might face
within a software system, and also the essentials of the solution to that problem. The
description of the solution should be in such a way that one can use the solution again and
again.

A pattern has four essential parts:

• Name

Short and descriptive name to describe the design pattern.

• Problem

Describes when to apply the pattern, and explains the problem to be solved.

• Solution

This is a description of all the elements that the design solution is made up of, as well as
their relationships, responsibilities andcollaborations.

• Consequences

The results and trade-offs, costs and benefits, etc.

A design pattern is always on a high abstraction level. It should not go into small details
regarding the solution, such as; whether you are using a stack, queue or other very specific
parts of a software system. Instead, they describe the classes and instances, what their roles
are and how they collaborate, and their responsibilities [FAMOOS99].

With the four parts mentioned above, a design pattern is described. The Problem part
describes when a particular pattern should be applied. In Solutions, we will find a description
of the design, of its elements and how these elements interact, their responsibilities,
relationships and collaborations. A design pattern also has to show the consequences of using
it in an application. Knowing consequences, the results and trade-offs for example, is very
important when it comes to selecting a pattern. The solution alone is not sufficient, if it brings
other problems instead.

8.2 Reengineering patterns
Reengineering patterns are patterns that describes how to change a legacy system into a new,
refactored system that fits current conditions and requirements. The main goal with
reengineering patterns is to offer a solution for reengineering problems. They are also on a
specific level of abstraction; they describe a process of reengineering without proposing a
complete methodology, and they can sometimes suggest a type of tool that one could use.

The idea behind reengineering patterns is that a developer must diagnose a problem, see all
available options and choose a particular course of action. Generally the pattern format has
been defined with some of the properties below in mind:

Focus on reengineering process.
Of course a reengineering pattern should focus on the reengineering process. For example,
how can we define the problems that has arised with the current system, and how do we
define them? What may be the pitfalls in transforming a system when this pattern is applied?

Easy navigation
The reengineer should be able to determine a patterns applicability rather quickly. Therefore a
pattern should give clear and precise information about it’s intended use.

Separate out tool and language dependent issues.
Since the pattern must be applicable in the most general way, and therefor should not specify
what tools or languages to use. The tools and the languages that one will use will probably be
subject to change, whereas the pattern, as it is a general solution, can and should, remain the
same.

Standard terminology and notation.
As we want to separate out the tool and language dependancy, the use of a language neutral
notation and terminology is mandatory.

The structure of a reengineering pattern consists of some essential elements, and this list
should show both similarities as well as differences between reengineering patterns and
design patterns.

• Pattern name

It’s very important with a short, clear and descriptive name. The name should be based on
the operation that the pattern is sed for performing, since this is the most natural way to
use it in discussions about the pattern.

• Intent

Here there’s a description of the reengineering process, the results and why it is desirable.

• Applicability

Describes when a particular pattern is applicable and when it’s not. Also listed here are
symptoms, reengineering goals and related patterns. These are symptoms experienced
during the reuse, maintenance and changing of the system.

• Motivation

Here is an illustration of the pattern in work; descriptions of the legacy system and its
structure as well as the refactored system and the relation between them. This is done
through the use of a concrete example which will contribute to a greater understanding of
the rather abstract presentation of the problem which follows in the structure and process
sections.

• Structure

Descriptions of the structure before and after reengineering. The participants and the
collaborations between them are here identified. The structure sections also includes a
discussion over any disadvantages and advantages in refactoring the system from the
current structure into the new target structure.

• Process
- The detection

Describes methods and tools to detect that the code is suffering from the suspected
problem and that the process can help to alleviate the problem.

- The recipe

How to perform the reengineering and possible variants.

- The difficulties
Optional. Situations where reengineering may not be feasible.

• Discussion

In this section, we discuss the legacy system and the refactored system, things like how
much will it cost, what are the trade-offs, what do we gain, how big is the problem, etc.

8.3 Conclusion
Although they share characteristics, reengineering and design patterns are different.

Similarities are, for example:

• Name
• Problem description
• Description of the solution
• Consequences and discussion

The difference lies in what kinds of problems the patterns are made to solve.
Design patterns describe how to solve a general and common problem in a certain way, the
process of which one should use for the final solution to be reached.
Reengineering patterns instead describe how to refactor an already existing system, so that it
can meet current needs and requirements. Since a design pattern is used to solve a problem
when constructing new systems, they are sub sets of reengineering patterns. A reengineering
pattern is often much more vast than design patterns, since the design phase – where the
construction of the new target system is being carried out – is only a part of the whole
reengineering process.

9. BENEFITS OF THE REENGINEERING PATTERN APPROACH

9.1 Introduction
The use of reengineering patterns have several benefits which addresses different parts of the
reengineering process, from the first glance of the system at hand to the final line of code in
the replacing software. Of course, all patterns are not equally good but specialize in a few
aspects depending on the phase for which they are designed. In this part of the report we
define what the important aspects of the reengineering process are and how the reengineering
patterns can address these different aspects.

9.2 Project Understanding
Some reengineering patterns address the important part of the process that concerns the
understanding of the software to be reengineered. In order to build a better system, we must
first understand the original one [FAMOOS99].

The understanding is vital in the opening phases of the reengineering process, as they usually
provide information that is crucial to the later phases. Some of these patterns are concerned
with the code examination, reading the source code of the project in hand and then identifying
the parts that can be used in the new projects as well as the parts that may or must be replaced
in the final product.

Other patterns address the documentation that already exists in the project. Looking at an
existing documentation can quickly give you an overview of the system, the structure and
development procedure that the original project development used.

As you can see, the use of these patterns in the beginning can give you a sense of what needs
to be done within a reasonable amount of time (some patterns require less than a days work in
order to give satisfactory output for use in the later phases) [FAMOOS99].
We will now look at three groups that are concerned the initial project understanding phase
and all have patterns associated with them. The groups are BPR, First Contact and Extract
Architecture.

BPR (Business Process Reengineering)
This is the actual cause of the whole reengineering process to even exist. Firstly, we must add
that the BPR is in itself an entirely own reengineering process in its own right and has very
little to do with the reengineering of software systems. Therefore we leave the BPR process
and BPR patterns to other research teams to examine. But BPR is important to software
reengineering in one way though. Since BPR is actually the reengineering of an entire
business and a new business usually means new software needs
[BPSARLSS94][FAMOOS99]. Therefore a reengineering team concerned with the update of
a legacy system needs to examine the variables that has changed since the original system was
developed (and updated). The use of patterns may give you an initial understanding, not of the
project that you are to redesign, but of the actual design of the business for which the software
is intended [BPSARLSS94].

Usually, these aspects of the business should be considered:

• What are the current business requirements?
• What are the objectives of the business?
• Are the requirements and/or the objectives likely to change?

Such things are important to grasp if the team are to make a successful implementation of a
new, improved system.
Again, patterns that are concerned with the examination of business changes and requirements
analysis may aid you and your team in your effort to make the system more capable of coping
with new business demands [BPSARLSS99].

First Contact
When you start to look at a project you are faced with a number of difficulties. First of all the
share scale of the project can be intimidating. Therefore there is a risk that you don’t find a
way to begin your reengineering process [FAMOOS99]. This may lead to slow progress in the
beginning, which in turn can cause an excessive workload later in the project. Such workloads
may in turn cause the delivery of the new product to be delayed and even cancelled. Also, you
will probably encounter colleagues that are sceptic in your ability of both coping with the
reengineering as well as the real need of such a process. If they are in a steering position they
may not trust your ability if you cannot show them good progress [FAMOOS99]. Getting a
quick understanding can impress these colleagues and convince them of the need for a new
product and that you are the person to entrust with the task.

Extract Architecture
After you have gotten a quick understanding of the project, you may wish to come to terms
with how you can change the existing project. In order to do this you can try to extract
information from available documentation and other information resources like databases and
by examining the source code.

Looking a database may give you a clear view of how a project handles data and data
manipulation, which can help you redesign that aspect of the project and look for tools that
simplify the control of the database.

By looking at the source code you can guess on objects and classes that may be useful in the
new product. These approaches are covered by the ‘Check the Database’ and the ‘Guess
Objects’ patterns. Guessing objects are of course mostly useful in an object-oriented project
development approach but may also be used in a non-object-oriented implementation.
Building a project that starts with the identification of classes and relations can later be
translated into a non-object-oriented source; probably enjoying a higher level of encapsulation
than would have been the case if the project had been done in a pure non-object-oriented way
[FAMOOS99].

9.3 Resource Efficiency
Since large ‘legacy’ systems, object-oriented or not, is a huge task, they demands a great deal
of resources, both in manpower and in other forms, like tools and time consumption. Since
resources are expensive, especially if the resources needed include large amount of time. The
use of reengineering patterns can reduce the resources needed dramatically.

As we already seen, the use of patterns in the understanding of the original project reduced
time consumption in the beginning of a reengineering process; other patterns use more or less
resources and tools.

Patterns that deal with resource effiencey are usually concerned with the extrapolation of ‘hot
spots’ or ‘areas of focus’ [FAMOOS99]. These areas of focus are such that they are more
important to examine and to redesign than other parts of the system. Since resources are so

important, the concentration of resources to these vital areas can greatly increase the chance
that the project will be completed in a satisfactory way. Areas of focus may in turn be devided
into several catagories, depending on the time aspects, the complexity and the functionality of
that area. Projects that are concerned with improving the userability of a system may rank the
complexity as the most important area of focus, while a project concerned with the correction
of flaws and bugs within the system may consider the functionality the top priority.
The use of patterns in deciding on hot spots or areas of focus may give you the upper hand
when it comes to manage the resource constraints [FAMOOS99].

9.4 Late Reengineering
In the later phases of the reengineering process, the emphasis depends on the fact whether the
project will end without any change in the source code or not. If the reengineering team has
found out that the system under investigation has very little or no need for a continued
reengineering and refactoring, the process may end at this state.

However, if the team decided to make critical changes to the system, then new patterns may
be applied to help the team organize and understand the how and when to make the necessary
changes. The fact that the a legacy system is usually so complex, the understanding part of the
reengineering process once again proves to be very important for the success of a
reengineering project. The ‘ Refactor to Understand’-pattern [FAMOOS99] address the fact
that by renaming and rebuilding parts or all of the source code in the project you may actually
find out the best way to implement the new functionality and by that saving time and effort.
This is usually a good pattern to use in conjunction with the ‘Read All the Code in One
Hour’-pattern since you would then already have an idea of how the original code was
structured.

After the functionality has been added to your new software system, the testing of these
changes is also very vital to a successful completion of the reengineering project.
Many patterns are concerned with the testing of new functionality, not only reengineering
patterns but design patterns in a more general term. But the testing of a reengineered legacy
system proves to be more difficult than that of a system that you have concieved entirely by
yourself. The difficulty lies in the fact that some parts of the system may not be entirely
understood, both in terms of structure and communication with other parts [FAMOOS99].
Designing good test scenarios and test programs may call for the use of well defined strategies
and methodologies in the form of patterns, both reengineering patterns as well as ordinary
forward engineering design patterns.

10. PATTERN NAVIGATION

There are several techniques which can be used to identify patterns. Here are some of these
techniques [ICESR99].

• Study a project and use some of these four techniques.
1. As the project proceed; try to be involved in the informal discussions.
2. Attend meetings concerning the project.
3. Ask questions to senior designers about the strategy they are using in the

reengineering system and why they are using that strategy.
4. As the project proceeds interview both senior decision makers and junior engineers

at various stages of the project.
Because it is difficult to take people away from their work to be interviewed, the first
two techniques are often the most useful.

• When you are studying a project, try to observe problems that appears and the tactics

the team use to solve it. At which areas have the team deviate from the strategy as they
planned in advance.

• Interview reengineers as they have several years of experience and ask questions about

how they did to the identify patterns that they using.

• Study work on reengineering projects that have been published.

Pattern navigation shows an overview of different patterns. The navigation is based on forces
that are important in reengineering. The patterns are listed in a table for each navigation and
in the table it shows what forces a pattern covers.
There are different types of forces, for example according to [FAMOOS99] the flexibility and
understandability force which we will study more closely. Other types of forces include
reuseability, effort, scalability, parsing effort and global impact of a pattern.

Flexibility
Try to transform inheritance relationship into a component relationship, because an
inheritance relationship can only be changed statically but an component relationship can be
changed dynamically. Using composition instead of inheritance will increase the flexibility of
the system.

Another way to improve the flexibility of the system is to detect and eliminate dependencies
between packages of a system that are not allowed according to the designated system
architecture. If these architecture breaking dependencies are not removed they could prohibit
the exploitation of the architecture’s advantages and it could also cause problem at
maintenance work.

Understandability
The understandability increases if breaking a single complex class into hierarchy of smaller
but more specialised classes. If the classes are separated it simplifies understanding how the
hierarchy could be extended.

11. TOOLS

Reengineering is a huge task. In order to reengineer a system with a successful outcome, tools
are very important, since they assist the reengineers to handle the usually vast amount of data
in a large legacy system. Tools will help the reengineering process by solving or assisting in
solving different problems, and maybe most importantly, to save time.

There are many different kinds of tools, all which will assist the reengineers in various phases
in the reengineering process. FAMOOS describes a few tool prototypes that were made
withint and for this project. These tools will support them and developers in the reengineering
process with various tasks such as visualisation and system reorganisation.

Examples [FAMOOS99]:

• Name: GOOSE
Description: A tool providing automated support for problem detection.
The reengineering of modern object oriented systems is difficult and costly, due to the
size and complexity of these systems. It is an enormous task to read through all the
source code in order to learn about the system, so there is a need for automation
provided by tools to gain knowledge about the system. This will give the developers
more time to focus on the reengineering itself.

• Name: DUPLOC

Description: A tool for detecting duplicated code.
Duplicated code means, among other things, duplicated errors and general code bloat.
Software with duplicated code is also much harder to change. It’s important to find
duplicated code, however it is a rather cumbersome task and therefor it is desirable to
produce tools that can provide automated assistance thereof, and DUPLOC is such a
tool.

• Name: CodeCrawler

Description: A tool that supports reverse engineering of large objectoriented projects
by combining visualisation with metrics.

The US Air Force Software Technology Support Center (STSC) also presents some various
tools for system reengineering. All these tools are also divided into many categories, to clarify
the purpose of each tool. These categories are:

• Business Process Reengineering
• Data name rationalization
• Data reengineering
• Forward reengineering
• Object module recovery
• Redocumentation
• Reformatting
• Restructuring
• Retargeting
• Reverse engineering
• Slicing
• Source code translating

All these categories are of course interesting as they all are at some point useful and important
in reengineering processes. A brief description of some categories and the tools will now
follow.

Reverse Engineering
The tools in this category are made to assist in the first phase of the whole reengineering
process, to reverse engineer the legacy system. Many of these tools can read the existing
source code and then present it in a way that gives the reengineer a clear overview of the
system, such as flowcharts and different types of diagrammes.

Examples [STSC99]:

• Tool Name: AutoAnalyzer
Vendor: Advanced Software Automation, Inc.
Description: AutoAnalyzer provides a testing and software maintenance environment
for software engineers. Builds an interactive structure chart of source code, traces use
of global variables, measures and displays test coverage analysis, performance
information.

• Tool Name: C Design and Documentation Language

Vendor: Software Systems Design, Inc.
Description: CDADL helps programming mainly by improving design quality and
designer productivity. It analyzes the pseudo-code and executable C code to find
errors and to make a printed output report which simplifies the design.

Forward Engineering
Tools under this category are tools to assist in the final phase of reengineering.

Examples [STSC99]

• Tool Name: ARIS
Vendor: Software Systems Design, Inc.
Description: ARIS is CASE tool which produces Ada code representing a Top Level
Ada design.

• Tool Name: Auto-G Case Toolset

Vendor: RJO Enterprises
Description: The Auto-G Ada Translator translates G&T Design Language
(G&TDL) to Ada. It is a complete lifecycle computer aided system engineering
toolset.

ReThree-C++ [PBIGGS96]
This is an integrated reverse engineering, redocumentation and reuse tool set, created by Pete
Biggs at Brigham Young University. ReThree-C++ can extract information from source code,
and create a repository of C++ classes for later retrieval. ReThree-C++ can be divided into
three main functions:

1. Reverse engineering of C++ source code
2. Documenting C++ source code.
3. Building, maintaining and searching a reuse repository of C++ classes which can

be re-used in later applications.

This tool can automatically reverse engineer C++ code, in order to make a visual presentation
of the class hierarchy in OMT object modelformat. Since it is difficult to find software that
can view OMT, is free and actually works, we have not been able to view the OMT.

ReThree-C++ can also document the source code. It uses the comments in the source code to
generate documentation on the software and saves it in .rtf format. The quality of the
produced documentation will therefor be dependant on the developer who wrote the source
code. After testing this feature a few times, we found that it worked very well without any
problems. This gave us a glimpse of how reengineering tools work and how they can be used
in the process.

12. STANDARD METHODOLOGIES

This chapter has been selected to give you an overview of the methodologies that are in use in
reengineering projects (both in software reengineering and in BPR). The methodologies are
all at a high-level but will follow the general outlook of the reengineering process that we
have described so far. We will also look at benefits and drawbacks of each methodology.
The names of each methodology has been choosen in a way that they reflect the overall
emphasize of that methodology.

Method 1: Continous Improvement

1. Describe the project
2. Create visions, values and objectives
3. Redesign business processes and tools
4. Evaluate concept and benefits
5. Plan for implementation
6. Implement the solution
7. Transition to continous process improvement.

This methodology, as described in the Reengineering (BPR) Methodologies put the
emphasize on the continuation of the project after its completion. This is good since it will
ensure that the project can stay up-to-date during longer periods of time and thereby reducing
the risk of further reengineering. According to some scholars [RM], this method does not take
enough time to consider the user needs and thereby increasing the risk of the project beeing
unsatisfactory when completed. A project that is easy to change but does not meet the
requirements are likely to be discarded since the business management will be less likely to
grant another reengineering process. Finally, the methodology has no cost versus benefit step.
This is higly undesirable, since the implementation of the new system may prove to be to
costly when compared to what is actual gained.

Method 2: Diagnose
1. Define the project
2. Document as-is processes (diagnose system)
3. Redesign business processes
4. Develop a cost/benefit analysis
5. Plan and Implement
6. Evaluate performance

This methodology has, according to [RM], a too time-consuming structure. The
documentation of an entire legacy system as-is means a lot of time is spent on the original
system and not on how to find ways to meet the new requirements. Of course, it will give the
reengineering team a good base on which to plan further reengineering tasks but as the time
goes by, the frustration with the inadequate legacy system becomes ever more appearent. It
can also means that the team may get hampered in their ability to think in different directions
as they get to familiar with the old way of doing things. This is one of the major drawbacks
according to the authors [RM].
A good thing is the fourth step, as it deals with a comparison of costs versus benefit. A system
may not be worth to reengineer if the costs overshadows the benefits. This step should be
carefully examined and after it has been done, the customer must be given the chance to
decide on further development lies within his or her interest.

Method 3: Design by learning

1. Create project definition
2. Learn from others (customers, associates, testing, technology)
3. Create vision and design new model
4. Develop to enable good architechture and models.
5. Perform an cost versus benefit analysis
6. Define process, system and training requirements.
7. Plan implementation
8. Develop solutions
9. Implement solutions and measure performance

This a very strong methodology in general. It lacks however the planning for continous
improvement which charachterize the first methodology. Not taking this into account may
cause the project to be unflexible and hard to update. On the positive side is the careful study
of other oppinions, especially the customer part which will give a good insight in what way
the system has to change in order to meet the demands and what parts is considered to be
adequate enough to keep. This is a clear advantage to the second methodology because it will
give good insight into the project without staring at a lot of processes and source code.
The methodology also has a cost/benefit step which also increases its userability.

Method 4: Best-Fit
1. Define project and identify team resources
2. Brainstrom new processes and technologies
3. Analyze and prioritize opportunities (benefit analysis)
4. Select “best” opportunity and design solution
5. Develop to enable the use of tools and other processes.
6. Plan transition
7. Implement solution
8. Measure results

According to the authors [RM] this methodology may be faster than the previous three but it
lacks the ability to produce long-lasting products. Although it has a transition step that
accommodate for further improvement the fact that the project team has little contact with the
costumer and the end-user may cause the whole project to miss its target. No matter how good
your ideas are it doesn’t help the end-user if they don’t provide what that user needs. Maybe it
will turn out that the “best-fit” solution is actually only the best in a set of bad solution. Also,
the time spend on brainstorming without proper knowledge about the requirements may mean
that the process may be forced to return to previous steps to add required functionality that the
first solution didn’t have. Since such iterative project development ususally means higher
costs, especially if the flaws are detected late in the development process, the new system may
come out with a much higher price tag than first anticipated.

13. SUMMARY AND NOTES

This small chapter will serve as our conclusion of this report. We believe that the concept of
reengineering will prove to be useful and become increasingly important as old software
systems, both non-object-oriented and object-oriented, will render obsolete as the flow of
information increase. Considering these swift changes, and the massive amounts of resources
to keep a software system up-to-date, we believe that new methods and tools will be
developed, so that the systems may remain above ground instead of six feet under.

REFERENCES

[BPR99] Jan. K. Collins, Business Process Reengineering: A USC Perspective,
University of South Carolina 1999.
http://www.research.sc.edu/research/bereview/be46_2/burseeng.htm

[SR] Shim Enterprise, Software Reengineering, Shim Enterprise.
http://shiminc.com/reengine.htm

[REFITS94] Tamara J. Taylor, Frank Sparks, Building a Phased, Structured Approach to
Reengineering Legacy Software Systems, September 1994.
http://www.stsc.hill.af.mil/crosstalk/1994/sep/xt94d09h.asp

[FAMOOS99] Holger Bär et al, The FAMOOS Object-Oriented Reengineering Handbook,
15-10-1999. http://www.iam.unibe.ch/~famoos/handbook

[WHRE96] René R. Klötsch, Reverse Engineering: Why and How to Reverse Engineer
Software, April 1996.
http://www.infosys.tuwien.ac.at/Projects/CORET

[RM] Jeff Hiatt, Reengineering (BPR) Methodologies, 1996.
http://www.prosci.com/mod1.htm

[ICESR99] Rick Dewar et al, Identifying and communicating expertise in systems
reengineering: a patterns approach, June 1, 1999.
http://www.reengineering.ed.ac.uk/

[STSC99] Karen Rasmussen, Tool Lists from the STSC’s Reengineering Tools Database, U.S.
Airforce Software Technology Support Center, 1999.
http://www.stsc.hill.af.mil/reng

[PBIGGS96] Pete Biggs, ReThree C++ - A Reverse Engineering, ReDocumentation and
Reuse Tool for C++, Brigham Young University 1996.
http://www.students.cs.byu.edu/~pbiggs/re3-cpp.html

� مقا�، از �ی �
ه مقا�ت ا �� ن سايت شده �� ��ه فاراي �� در PDFكه #� فرمت ميباشد ��

ان قرار � ايل ميتوانيد #� 6يک �� روی د3ه های ز�� گرفته است. اختيار -, عز�� از در صورت :�

اييد:سا�� مقا�ت � استفاده :� ن<�

ه شده از �� � مقا�ت �� �
 ه فا ؛ مرجع جديد�� �� ت معت<� خار�B سايت �� �# ,Dن

http://tarjomefa.com/
http://tarjomefa.com/%D8%AF%D8%A7%D9%86%D9%84%D9%88%D8%AF+%D9%85%D9%82%D8%A7%D9%84%D9%87+isi+%D8%A8%D8%A7+%D8%AA%D8%B1%D8%AC%D9%85%D9%87+%D8%B1%D8%A7%DB%8C%DA%AF%D8%A7%D9%86
http://tarjomefa.com/%D8%AC%D8%B3%D8%AA%D8%AC%D9%88-%D8%A8%D9%87-%D8%B1%D9%88%D8%B4-%D8%AA%D8%B1%D8%AC%D9%85%D9%87-%D9%81%D8%A7
http://isidl.com/

