

 :ارائه شده توسط

ه فا �� سايت ��

� مرجع �� ه شده جديد�� �� مقا�ت ��

ت معت � �# از ن%$

http://tarjomefa.com/

MobiliTools:
A Mobility Toolbox for Agent Interoperability

Based on OMG Standards

Bruno Dillenseger
France Télécom R&D (Cnet), BP98, F-38243 Meylan Cedex, France

bruno.dillenseger@cnet.francetelecom.fr

Abstract. One of the keys to success for applications of mobile and/or
intelligent agents in large-scale systems such as Internet is the ability
of heterogeneous agents to cooperate and negotiate, and meet if they
are mobile. This requires the adoption of standards for the underlying
distributed system to support interoperability in agent management,
mobile agent transport and localization, and agent communication
transport. This paper introduces MobiliTools, an OMG standards-
based solution to these issues, and show how mobile agent platforms
can be built from the combination of three independent components,
respectively addressing mobility, communication, and activity
concerns.

1 Yet Another Java Mobile Agent Platform?

1.1 A new paradigm for distributed systems

Classical techniques for distributed systems are based on client/server, code
on demand, and remote evaluation paradigms, which finally result in
moving code, and/or data, and/or control, as described in [14]. Now, mobile
agents bring everything together into a new paradigm.

This paradigm was introduced by Telescript [15] under the name of
remote programming, to reduce network load and latency, and to fit
temporary network connectivity. As underlined in [9], there is little chance
to find a “killer application” of mobile agents, but the paradigm is nice for
any distributed application spread in a large-scale dynamic open system,
where adaptation capability, through dynamic re-distribution of a set of
cooperating agents, is a key to coping with changing hosts and network
conditions, or to optimize the execution of distributed services.

1.2 A complex combination

This nice anthropomorphic paradigm may not be so easy to handle
practically. Besides security issues, which are critical to large-scale
applications on the Internet, transparency/reliability, scalability and
interoperability are other key challenges.

Transparency. Typical mobile agent platforms are built on a centralized
programming language, enhanced with remote communication capabilities,
and finally completed with mobility features (e.g. Java-based platforms).
This final add-on of mobility deeply changes the behaviour of the original
programming framework. For instance, many useful JDK packages are not
designed for mobility, and transparency to mobility issues arise for any
access to resources such as threads, files, sockets...

This is the reason why Java-based frameworks include specific models
and tools for agent activity, communication and mobility, and specify
programming restrictions. For instance, creating threads is discouraged (or
forbidden) by Voyager [19] and Grasshopper [17], because the platform
needs to tightly manage the agent activity. In some platforms, insufficient
or disregarded restrictions can result in unspecified behaviour if mobility
occurs while an agent is involved in communication. As a matter of fact,
communication has consequences on the agent activity, and mobility has
consequences on both communication and activity.

Full transparency would consist in having strong mobility as defined in
[6], maintaining not only the agent state, but also the state of its activity
and of its bindings to resources, including on-going communications.

Scalability. Both activity and communication models are of great
importance for scalability. Java-based platforms that create (at least) one
thread of activity per agent are examples of non-scalability if you imagine
hundreds or thousands of agents needing to meet in one place.

Communication tools are also determining in scalability. Agents need to
communicate locally, to take advantage of the remote programming
paradigm, but also remotely, as explained in [13]. Remote communication
may be implemented in a number of ways, with more or less state-of-the-art
properties in terms of persistence, reliability, guaranty of delivery and
causality ([2], [13]). Unfortunately, these outstanding properties generally
rely on distributed algorithms introducing scalability limitations.

Interoperability. Last, but not least, it must also be considered that
mobile agents’ specific properties are dedicated to large-scale, dynamic,
open distributed systems (e.g. Internet). In such a context, heterogeneous
mobile agents need a common high-level communication language to
understand each other, as well as a standardised distributed execution and
communication infrastructure to interoperate.

FIPA’s [16] and KQML-based Agent Communication Languages are
emerging standards for making agents understand each other, negotiate
and cooperate. But high-level communication also requires a lower level of
interoperability, on the communication transport level. Unfortunately, no
standard communication infrastructure actually emerges to transport
messages between heterogeneous agents. Mobile agents also need to move
around in a standardised infrastructure, with a common conceptual
framework to deal with.

Today’s mobile agent platforms typically come with specific integrated
frameworks making it difficult to introduce interoperability support.
Nevertheless, Voyager’s CORBA support and Grasshopper’s MASIF
compliance are encouraging effort examples towards interoperability.

1.3 MobiliTools’ specific approach

MobiliTools is a set of CORBA based Java tools for mobility. The specific
architecture of MobiliTools follows two main principles:
1. a clear separation between object mobility support, communication tools,

and activity management;
2. use of standard middleware for agent and communication transport.

Principle (1) is motivated by the idea that there is no universal mobile
agent framework. It is preferable, instead, to create a number of
interoperable agent frameworks by choosing and combining different
communication tools and agent activity schemes, on top of a mobility kernel.
If at least one of the communication tools is independent from the mobility
kernel, it can be used by any other agent platform or software to
interoperate. Principle (2) enforces interoperability by choosing a standard
communication layer, not only between agents, and between agent
platforms, but also between agents and legacy applications. Moreover,
communication middleware comes with useful generic services and tools for
typical distributed systems’ needs.

At last, MobiliTools considers scalability and transparency as key
requirements.

2 OMG standards and agent technology

2.1 CORBA

OMG’s Common Object Request Broker Architecture makes it possible for
distributed programmes to perform remote calls on each other, regardless
of their programming languages, in an object-oriented manner, while hiding
network layers and operating systems heterogeneity. This standard is the
result of a consortium grouping the major companies in information
technology, and has several commercial and free implementations. CORBA
support in some web browsers and in Java 2 is a sign of maturity.

CORBA comes with common services for distributed systems such as
localisation (naming service, trader), and event-oriented communication
(event service). Persistence, transactions, and security are also addressed.
All these topics are of great interest for mobile agents, and everything can
be re-used (as is, or as implementation templates), without enforcing any
programming language (provided that the mapping exists from the
Interface Definition Language to the target language), while relying on a
well known, specified and widely available standard.

CORBA is an opportunity for interoperable basic management of agents,
transport of mobile agents, and transport of agent communication. [3]
describes several agent platforms developed on top of middleware such as
CORBA. These platforms show in particular how several programming
languages may co-exist to allow several programming levels, and how the
middleware can be fully hidden to the agent programmer.

CORBA implementations do not actually support object mobility, but
they can be used for every stationary component in a system of agents:
execution environments hosting agents, infrastructure for agent
communication, directory service...

2.2 Mobile Agent System Interoperability Facilities

OMG’s first step in agent technology is the MASIF specification [10],
dedicated to the interoperable management of agents and agent platforms.
MASIF’s framework is based on the following concepts: Agents
autonomously act on behalf of a person or an organization called an
authority. Agents are executed in places, hosted by agent systems (see
Fig. 1). Mobile agents have the ability to move from place to place, between

agent systems, provided that their agent system type is recognized by the
destination agent system. Agent systems are also bound to an authority,
and may be grouped into a region if they represent the same authority.
Agents are given a globally unique name resulting from the triplet
{authority, agent identity, agent system type}.

This framework is managed via two CORBA interfaces. Interface
MAFAgentSystem must be implemented by agent systems for managing
agents (create, suspend, resume, terminate), as well as receiving migrating
mobile agents and transferring agent classes. Interface MAFFinder is
dedicated to registering and finding agents, places and agent systems.

Common MAFFinder

Fig. 1. MASIF conceptual framework, with MAFFinder and MAFAgentSystem interfaces.

MAFAgentSystem

Object Request Broker

MAFAgentSystem

Agent system
agent

place

Object
Services

directory service
for agents, agent
systems, places

2.3 CORBA 2.3, OMG Agent Working Group

OMG’s interest in mobility and agent technology is growing. CORBA 2.3
specifications are contributing to object mobility support by including an
object-by-value feature that makes it possible to pass programming
language objects as invocation parameters.

As far as agent technology itself is concerned, MASIF is only a
preliminary step in OMG’s work. The Agent Working Group (AWG) [18] was
created at the end of 1998, in order to open a forum for educating OMG in
agent technology, and develop an architectural framework supporting agent
technology in a compatible and complementary way with OMG’s
specifications. The AWG is also interested in coordinating standardisation
work with other consortium in the agent field, such as FIPA.

The AWG started to write an “Agent technology green paper” [11], issued
a Request For Information on “Agent technology and Object Management
Architecture” in 1999, and is currently working on an “Agent Technology
White Paper and RFP Roadmap” [12]. RFPs will focus on interoperability,
agent communication language, security, mobility, as well as distribution,
robustness and scalability.

3 The Agent Communication Transport Service

3.1 Overview
The Agent Communication Transport Service (ACTS) is a CORBA

service for transporting messages between heterogeneous agents, whatever
mobile or not. Accordingly to the decomposition suggested in Sect. 1.3, the
ACTS is a communication tool, independent from both the mobility kernel
and the activity model. Although it is independent from MASIF, the ACTS
may be considered as a complement enabling interoperability between
agents for remote communication, through the definition of extra interfaces.

A detailed description of the ACTS can be found in [4]; we present the
basics below, and then compare the ACTS with other related work.

How it works. The ACTS is based on one or several servers, playing the
role of message port factory. Basically, message ports are stationary FIFO
buffers where agents can add and retrieve messages of CORBA “Any” type.
Note that agents need not be CORBA objects. A message port can be
switched from this default store mode to forward mode, by declaring a
message port listener. A listener is a CORBA object that receives pending
and incoming messages. This listener may be invalidated, either explicitly,
or as soon as a CORBA communication failure occurs with this object. Such
a communication failure may spring from a loss of network connectivity
with the listener, or may be caused by an obsolete CORBA object reference
due to the listener mobility. No message is lost, and the FIFO order is
maintained anyway.

Typical ACTS usage. The ACTS may be distributed on a number of
servers running on well connected nodes (ACTS servers can be considered
as e-mail servers). An agent may have one or several message ports in
different network areas in order to improve communication performance
and/or reliability. According to its specific constraints, an agent may choose
either a pure asynchronous communication model, where it polls its
message port (store mode), or a more "reactive" model where it gets
incoming messages on the fly (forward mode). In the latter case, the new
reference of the listener has to be registered after each move in order to keep
the "reactive" behaviour. Note that the forward mode should be handled
very carefully, since each forwarded message creates a thread of activity in
the listener.

Customization: ACTS personalities. The ACTS personalities hide the
CORBA infrastructure and the ACTS interfaces, while providing easy-to-
use communication utilities for Java. ACTS personalities also come with
enhanced transparency support, advanced communication features, and
higher level addressing.

The ACTS Mailbox personality wraps message ports into Mailbox Java
objects. Mailboxes are designated with high-level addresses, consistent with
MASIF’s region concept (agent_name@region_name). Multicast and unicast
features are supported by addresses transparently targeting a group of
mailboxes in a given region (group_name@region_name). The CORBA
naming service is used to register and find the ACTS servers and the
mailboxes’ message ports:

– name “/MAF/region_name/acts/factory” for ACTS servers;
– name “/MAF/region_name/acts/mailbox/mailbox_name” for message

ports bound to ordinary mailboxes, or arbitrary unique names in
naming context “/MAF/region_name/acts/mailbox/mailbox_name/” for
message ports bound to group mailboxes.

Sect. 4.3 details the specific naming service usage for scalability.
The ACTS Logged Mailbox personality is a Mailbox extension providing

the programmer with communication tracing tools and event ordering
based on a Lamport Clock mechanism [8]. The ACTS FIPA personality is a
FIPA-oriented use of the ACTS, compliant with FIPA’98 specifications for
Agent Management and agent-agent interactions [5].

3.2 Further discussion on the ACTS and communication issues

Agent communication schemes. [1] identifies two communication
schemes in agent-based systems: agent-to-agent communication where
partners are addressed by globally unique identifiers, and anonymous
communications where partners do not know each other (event model).
Through the Mailbox personality and its multicast/unicast enhancement,
we see that the ACTS supports both schemes, both in forward and store

mode. Another way to achieve this is to mix the message ports with the
CORBA event service, but the event service can’t be used directly by agents
because of their mobility.

Communication delivery. Three basic techniques can be used (and
mixed) to reach a moving destination:
1. use a directory which binds constant names to changing locations;
2. broadcast;
3. replace the mobile agent by a forwarding “ghost” on each move;

Technique (1) is often criticized for it relies on a centralized service.
Nevertheless, this technique is currently of common use in mobile phone.
Applicability domain of technique (2) is typically the LAN, where
broadcasting does not necessarily generate extra messages (e.g. Ethernet).
Larger-scale broadcast is a problem since it typically consumes too much
network bandwidth and processing time in all the recipients (and/or in any
intermediate communication element). Technique (3) comes with risks of
reference chain breaking and forwarders proliferation. Moreover, it can not
be applied when the reason for mobility is a node or network link shutdown.

All these techniques can be defeated in the case of highly mobile agents
because messages may be routed permanently and never reach their
destination. [13] presents a solution derived from the distributed snapshot
algorithm. It is based on a synchronisation between message propagation
and moving agents on communication links. However, this work needs to be
continued in order to take network and node faults into account, and
scalability is likely to be a problem.

The ACTS approach is different: an agent is always addressed by other
agents through a single reference that never changes (the message port).
The only reference that needs to be updated is the reference to the listener
when a message port is operated in forward mode. It is under the agent’s
responsibility to do this update. In the special case of a highly mobile agent,
it is recommended not to use the forward mode, not because messages could
be lost, but because messages could be never sent to the listener. The store
mode seems to be the right communication model in this case.

4 The Simple MASIF Implementation

4.1 SMI overview

Accordingly to the decomposition of agent platforms given in Sect. 1.3, SMI
implements a mobility kernel in Java. Starting from the MASIF
specification, SMI aims at providing a generic, light-weight and well-
specified environment for mobile Java objects. As of today’s version, SMI
comprises seven classes and one interface (not including code generated
from the MASIF IDL definition). Class Agency and interface MobileObject

are of main interest.

Agencies. An agency is an execution environment for mobile agents, or an
agent system in MASIF’s terminology. Basically, they are instances of class
Agency running in a JVM. Each agency belongs to a region, has a name
(unique in the given region), and is bound to an authority. An agency is also
a CORBA server implementing MASIF’s MAFAgentSystem interface. Its
CORBA object reference is registered in the naming service (see Sect. 4.3).

Agents can be managed through the MAFAgentSystem interface and the
methods of class Agency . Operations include creating and terminating an
agent, suspending and resuming an agent activity, moving an agent, listing
the names of hosted agents, and getting information on a local agent.

Mobile objects/agents. Agencies have methods for creating and
managing any Java object implementing the MobileObject interface. This
interface mainly consists of call-backs related to the lifecycle of mobile
agents (see Sect. 4.2). MobileObject implementations also have to
implement the java.io.Serializable interface since Java serialization is
used to generate mobile agents’ states. As specified by MASIF, an agent
resides in a place, and has a unique name combining an identity, an
authority and an Agent System Type identifier (specific to SMI).

4.2 MobileObject lifecycle

The design of interface MobileObject is a straightforward mapping of the
MASIF framework: agents may be created, moved, suspended, resumed and
terminated. Agents have to be informed when such lifecycle events start,
succeed or fail (see Table 1), not only to properly react, but also to be able to

deny permission: an agent can refuse creation, mobility, or reinstallation
after a move, by throwing an exception in the corresponding call-back.

For instance, method moveAgent() of class Agency involves a number of
steps which can fail for various reasons: the specified agent or the
destination agency doesn’t exist, the destination agency can’t be reached
because of a communication problem (network, CORBA, naming service), or
agent de/serialization has failed. But the agent may also abort the move by
throwing an exception before (in beforeMove()) or during serialization,
during or after (in afterMove()) deserialization. If the move is aborted after
the serialisation step, the afterMoveFailed() call-back is invoked.

Table 1. Agent lifecycle management and MobileObject interface.

Agency method involved MobileObject call-back(s)
createAgent setAgency afterBirth

resumeAgent resume

suspendAgent suspend

moveAgent beforeMove setAgency afterMove afterMoveFailed

terminateAgent beforeDeath

4.3 Naming service distributed exploitation

SMI agencies are bound to unique names in the CORBA naming service,
according to a naming scheme extending MASIF’s concept of region:
“/MAF/region_name/agency/agency_name”. As a result, agencies (like
mailboxes’ message ports and ACTS servers, see Sect. 3.1) can be found via
high-level deterministic names, helping region interconnection.

A specific naming service administration is required to avoid a
bottleneck effect. The first idea is to distribute the naming service on
several servers, with one name server per region. Each name server
contains the name bindings for its own region, and is federated with the
other name servers in the “/MAF/” naming context. As a result, resolution
of name “/MAF/regionA/...” with region B’s name server is transparently
forwarded to region A’s name server. To go further on distribution, region
names may contain sub-regions (e.g. “regionA/sub-region1/...”). In this case,
one name server can be responsible for each sub-region. Note that this
distribution also applies for the ACTS servers.

4.4 Back to MASIF and interoperability

MASIF specifications practically supports interoperability for basic agent
management tasks, through the definition of:

– a common framework of places, agent systems, region, etc.;
– a service for agent, place and agent system registration and lookup;
– an external interface for agent lifecycle.
All these points don’t require a smart interpretation, and their

implementation is quite straightforward. But interoperability is not fully
specified for agent mobility, and is not addressed at all for agent
communication. Since the latter issue is explicitly not in the scope of MASIF
(the ACTS described in Sect. 3 suggests one solution), let’s focus on the
former issue. MASIF’s mobility support is based on two operations:

– receive_agent() is invoked on the destination agency to transfer an
agent - parameters include the agent profile, the agent state, the
agent class name, and a CORBA object reference to the agent system
providing the classes;

– fetch_class() is invoked by the destination agency on the class
provider to get the incoming agent’s locally undefined classes.

Agent profile. Heterogeneity management is based on the provisioning of
an agent profile. A profile contains a set of identifiers specifying the agent
programming language, the agent system type, versioning information, and
serialization format. Identifiers are already defined for Java, Tcl, Scheme,
Perl, Aglets, MOA, AgentTcl and Java object serialization.

SMI naturally gets the Java language and the Java object serialization
identifiers, and is given a free identifier for “SMI agent system type”. SMI’s
policy is to reject agents of any other agent system type trying to move in.

Since a dedicated exception is missing, the generic MAFExtendedException

exception is thrown. It could be imagined that hosting an agent of a different
agent system type but of the same programming language could be easy,
especially in the case of Java. But several implementation choices remain
about de/serialization, class loading and agent lifecycle hooks. Let’s discuss
the interoperability issues in the case of Java as a common programming
language (in the case of heterogeneous programming languages, we imagine
a pseudo-agent system switching agents on to the right agent system).

Agent deserialization and classloader. Using standard Java object
serialization does not mean that a standard ObjectInputStream can be
used for deserialization. A specific classloader must be provided for each
agent in order to fetch the classes from the specified class provider, using
the specified codebase, for the specified agent profile. This classloader must
be supplied by a specific ObjectInputStream deserializing the agent state.

There are several other implementation choices about class loading
issues, which may lead to non-interoperability. For instance, the classloader
used for agent deserialization may be quite different if it assumes that
classes are transferred as a whole as a parameter of receive_agent() , or
downloaded on the fly from the class provider if they are locally undefined.

Missing classes in the destination agent system may be either always
fetched from the same agent system, or from the source agent system. The
former technique introduces a serious bottleneck, and may prevent an agent
from moving from agency B to agency C if the class providing agency A is
unreachable. The latter technique may cause a proliferation of classes, since
it requires that the agencies keep byte code for hosted agents’ classes. The
main issue is scalability, since the amount of byte code stored in each agency
may rapidly grow. SMI uses this technique however, because it results in a
much more fault tolerant overall distribution. It has to be tuned and refined,
but detecting and discarding useless classes is complicated by Java’s
reflective features.

Internal interfaces. Finally, the main difficulty for interoperability
within a given programming language, is that standard hooks must be
specified to tell the agent it is going to move or die, or it has just moved, or
it has just been born... A common lifecycle interface such as SMI’s
MobileObject (see Sect. 4.2) should be defined for each language.

Local interactions with the agency and the other agents also need to be
specified. For instance, an agent willing to move must be given a standard
way to request the move from the agent system it is residing in. Then,
supporting the remote programming paradigm for heterogeneous agents
requires a standard mechanism to get a kind of a reference to a local agent
(e.g. from the MASIF name, or the name itself), and use this reference with
a local communication tool through a standard interface. Although CORBA
could be regarded as heavy, it provides support for heterogeneous
languages, and implementations generally optimize local invocations.

4.5 To be added: activity support

The ACTS and SMI provide two out of the three components described by
Sect. 1.3 — the activity support is lacking. As a matter of fact, although
MASIF describes agents as autonomous active objects, SMI does not require
mobile objects to be active. If an agent needs to be active, it may use the
lifecycle call-backs to start, suspend, resume and stop one or several
activities. Agents may be given a thread of activity, or share a (pool of)
thread(s). The former approach fully supports autonomous agent activity,
but is not scalable, while the latter approach is essentially dedicated to
event-driven agents, like in [2].

Event-driven agent activity may be implemented using the reactive
programming model. Such a model consists in splitting execution into
logical time slices, or instants. Reactive objects react to events,
combinations of events, or absence of events, and generate events that are
consumed in the same instant. An instant ends when all events are
consumed, and a new instant starts when new external events appear.

The benefit of such an approach is that between two instants, the state
of an agent is stable and very well defined. Then, move requests can be
transparently executed after the end of each instant, without affecting the
programming model. Moreover, work described in [7] has produced a Java
prototype able to run thousands of reactive objects, which is a promising
performance regarding scalability concerns.

5 Conclusion

Through the presentation of MobiliTools, this paper practically explores:
– the applicability and relevance of OMG standards for making

scalable, interoperable, distributed mobile agent platforms;
– how a mobile agent platform can be built as a combination of a

mobility kernel, communication tools, and agent activity support.
Although MASIF brings limited interoperability support, mainly

because of the “internal interfaces” issue, it is an interesting starting point
for the architecture of mobile agent platforms. CORBA is convenient to
implement the stationary parts of the global infrastructure, responsible for
transporting and managing agents and messages. The naming service, used
in an appropriate manner, provides a scalable directory for high-level
location-independent references. At last, the approach based on the
assembly of independent components improves comprehensibility of
transparency issues, and leads to a variety of interoperable combinations.

Next steps include SMI tuning and completion in order to fully
implement MASIF, the implementation of a couple of agent activity models,
and looking for interoperability assessment opportunities. We are also
working on strong mobility support, on the basis of the reactive model, and
applying the MobileObject lifecycle interface to resources encapsulation.

References
1. J. Baumann, F. Hohl, N. Radouniklis, K. Rothermel, M. Strasser:

Communication concepts for Mobile Agent Systems. In mobile Agents: 1st
International Workshop MA’97, Lecture Notes in Computer Science, April 1997,
Springer, pp. 123-135.

2. L. Bellissard, N. De Palma, A. Freyssinet, M. Herrmann, S. Lacourte: An Agent
Platform for Reliable Asynchronous Distributed Programming. Symposium on
Reliable Distributed Systems (SRDS’99), Lausanne (Switzerland), 20-22
October 1999.

3. B. Dillenseger: From Interoperability to Cooperation: Building Intelligent
Agents on Middleware. Lecture Notes in Artificial Intelligence 1437 (Proc. of
IATA’98), Sahin Albayrak, Francisco J. Garijo Eds. Springer 1998, pp. 220-232.

4. B. Dillenseger, Huan Tran Viet: Towards full agent interoperability. In Proc. of
2nd International ACTS Workshop on Advanced Services in Fixed and Mobile
Telecommunications Networks. 9-10 September 1999, Center for Wireless
Communications, Singapore.

5. FIPA 98 Specification. Foundation for Intelligent Physical Agents (Geneva,
Switzerland),1998. see [16]

6. A. Fugetta, G. P. Picco, G Vigna: Understanding code mobility. IEEE
Transactions on Software Engineering, vol. 24, No 5 (1998), pp. 342-361.

7. L. Hazard, J.-F. Susini, F. Boussinot: The Junior Reactive Kernel. Rapport de
recherche No 3732, July 1999, INRIA Sophia Antipolis (France).

8. L. Lamport: Time, clocks, and the ordering of events in a distributed system.
Communications of the ACM, July 1978, Vol. 21, No 7., pp. 558-565.

9. Danny B. Lange, Mitsuro Oshima: Seven good reasons for mobile agents.
Communications of the ACM, Vol.42, No 3, March 1999, pp. 88-89.

10. Mobile Agent System Interoperability Facilities Specification. Joint submision:
GMD Fokus & IBM Corp., supported by Crystaliz Inc., General Magic Inc., The
Open Group. OMG TC document orbos/97-10-05 (1997).

11. OMG Agent Working Group: Agent Technology Green Paper. Document ec/99-
12-02, 24 December 1999. see [18]

12. OMG Agent Working Group: Agent Technology White Paper and RFP Roadmap.
Ref. internet/99-11-01, draft .02, 29 November 1999. see [18]

13. Amy L. Murphy, Gian Pietro Picco: Reliable communication for highly mobile
agents. In proc. 1st International Symposium on Agent Systems and
Applications, 3rd International Symposium on Mobile Agents, Palm Springs
(USA), D.S. Milojicic ed., october 1999, IEEE Computer Society, pp. 141-150.

14. J. Vitek: New paradigms for distributed programming. In proceedings European
Research Seminar in Advanced Distributed Systems, Zinal (Switzerland),
march 17-21, 1997.

15. J. White: Telescript technology: the foundation for the electronic market place.
General Magic White Paper, General Magic, 1994.

Web references
16. FIPA - http://www.fipa.org/
17. Grasshopper - http://www.ikv.de/
18. OMG Agent Working Group - http://www.objs.com/isig/agents.html
19. Voyager - http://www.objectspace.com/

� مقا�، از �ی �ه مقا�ت ا �� ن سايت شده �� ��ه فاراي �� در PDFكه #� فرمت ميباشد ��

ان قرار � ايل ميتوانيد #� 6يک �� روی د3ه های ز�� گرفته است. اختيار -, عز�� از در صورت :�

اييد:سا�� مقا�ت � استفاده :� ن<�

ه شده از �� � مقا�ت �� � ه فا ؛ مرجع جديد�� �� ت معت<� خار�B سايت �� �# ,Dن

http://tarjomefa.com/
http://tarjomefa.com/%D8%AF%D8%A7%D9%86%D9%84%D9%88%D8%AF+%D9%85%D9%82%D8%A7%D9%84%D9%87+isi+%D8%A8%D8%A7+%D8%AA%D8%B1%D8%AC%D9%85%D9%87+%D8%B1%D8%A7%DB%8C%DA%AF%D8%A7%D9%86
http://tarjomefa.com/%D8%AC%D8%B3%D8%AA%D8%AC%D9%88-%D8%A8%D9%87-%D8%B1%D9%88%D8%B4-%D8%AA%D8%B1%D8%AC%D9%85%D9%87-%D9%81%D8%A7
http://isidl.com/

	1 Yet Another Java Mobile Agent Platform?
	1.1 A new paradigm for distributed systems
	1.2 A complex combination
	Transparency
	Scalability
	Interoperability

	1.3 MobiliTools’ specific approach

	2 OMG standards and agent technology
	2.1 CORBA
	2.2 Mobile Agent System Interoperability Facilities
	2.3 CORBA 2.3, OMG Agent Working Group

	3 The Agent Communication Transport Service
	3.1 Overview
	How it works
	Typical ACTS usage
	Customization: ACTS personalities

	3.2 Further discussion on the ACTS and communication issues
	Agent communication schemes
	Communication delivery

	4 The Simple MASIF Implementation
	4.1 SMI overview
	Agencies
	Mobile objects/agents

	4.2 MobileObject lifecycle
	4.3 Naming service distributed exploitation
	4.4 Back to MASIF and interoperability
	Agent profile
	Agent deserialization and classloader
	Internal interfaces

	4.5 To be added: activity support

	5 Conclusion
	References
	Web references

