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Abstract—Fast and accurate contingency selection and ranking
method has become a key issue to ensure the secure operation of
power systems. In this paper multi-layer feed forward artificial
neural network (MLFFN) and radial basis function network
(RBFN) are proposed to implement the online module for power
system static security assessment. The security classification,
contingency selection and ranking are done based on the com-
posite security index which is capable of accurately differentiating
the secure and non-secure cases. For each contingency case as
well as for base case condition, the composite security index is
computed using the full Newton Raphson load flow analysis. The
proposed artificial neural network (ANN) models take loading
condition and the probable contingencies as the input and assess
the system security by screening the credible contingencies and
ranking them in the order of severity based on composite security
index. The numerical results of applying the proposed approach
to IEEE 118-bus test system demonstrate its effectiveness for
online power system static security assessment. The comparison
of the ANN models with the model based on Newton Raphson
load flow analysis in terms of accuracy and computational speed
indicate that the proposed model is effective and reliable in the fast
evaluation of the security level of power systems. The proposed
online static security assessment (OSSA) module realized using
the ANN models are found to be suited for online application.

Index Terms—Composite security index, contingency screening
and ranking, multi-layer feed forward neural network, online
static security assessment, radial basis function network.

I. INTRODUCTION

M AINTAINING system security is an important require-
ment in the operation of a power system. Power system

security assessment is the analysis performed to determine
whether, and to what extent, a power system is reasonably safe
from serious interference to its operation [1]. Three major func-
tions involved in power system security assessment are system
monitoring, contingency analysis and security control. System
monitoring provides up-to-date information of bus voltages,
currents, power flows and the status of circuit breaker through
the telemetry system so that operators can easily identify the
system in the normal state or in abnormal condition.
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On the other hand, contingency analysis is carried out to eval-
uate the outage events in power system and it is a critical part in
security assessment and involves critical contingency screening
and ranking [2]. If the system is found to be in insecure, security
control will take the preventive or corrective control actions to
ensure the system back to secure condition.
Static security assessment checks the degree of satisfaction

for all relevant static constraints of post contingency steady
states and is needed to solve a large set of nonlinear algebraic
equations [3] for N and N-1 system conditions. The security
analysis becomes more complex and difficult, as these studies
need to be performed online for it to be more effective. Conven-
tionally these analysis are performed offline, since the simula-
tion take significant computation time. The large computational
burden has been the main impediment in preventing the secu-
rity assessment from online use [4]. On the other hand there is a
pressing need for more accurate and powerful tool for security
assessment [5]. The work presented in this paper was motivated
by the attempt to significantly reduce the computation time re-
quired for security assessment so that the analysis can be con-
verted from offline to online use, in order to assist the grid op-
erators in their real time controller analysis. The trend towards
deregulation has forced the modern utilities to operate their sys-
tems closer to security boundaries. This has fueled the need for
faster and more accurate methods of security assessment [6].
The overall computational speed and accuracy of an online

security assessment depends on the effectiveness of contin-
gency screening and rankingmethod, the objective of which is to
identify the critical contingencies among a list of possible contin-
gencies.Thecontingencyselectionand ranking isconventionally
performed by various schemes by computing a scalar perfor-
mance index (PI) derived from DC or fast decoupled load flow
solution for each contingency [7]. These methods generally em-
ploy a quadratic function as the performance index. This makes
the contingency ranking prone to masking problems, where a
contingency with many small limit violations is ranked equally
with the one in which there are only a few large limit violations.
Also, the selection ofweighting factors in the performance index
is found to be a difficult task, as it should be chosen based on
both the relative importance of buses and branches and the power
system operating practice [8], [9]. In addition, majority of the
performance indices do not provide an exact differentiation be-
tween the secure and non-secure states. The performance indices
were traditionally calculated separately for line flows and bus
voltages, as the overall performance index defined as the sum or
weighted-sum of the scalar performance indices for bus voltages
and the line flows could not provide accurate results [10].
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In [10], authors have proposed a single composite security
index to indicate bus voltage and line flow limit violations which
is calculated using Newton Raphson load flow technique. The
index is defined in such a way that it completely eliminates the
masking problem, and provides a better definition of security
in which the secure state is indicated by an index value “0”,
while a value greater than “1” indicates insecure state. Index
values lying between “0” and “1” indicate the alarm limit. It
also avoids the difficult task of selecting the weights. This index
works a projection of the multiple factors in to a hyperboloid
region as a scalar value, considering both power flow and bus
voltage violations, making it more robust. An overview is given
in the following section.
While the newly introduced index ensures proper classifica-

tion of security levels, the attempt could be to expedite the com-
putations. In this direction, over the past few years, several ap-
proaches using artificial neural networks (ANN) have been pro-
posed as alternativemethods for static security assessment using
both supervised and unsupervised architectures [11]–[14]. Since
the ANNs reduce the online computational requirements and are
quick in response time, these has the potential for online appli-
cations and can easily be adapted. The real time computational
speed and strong generalization capability makes the ANN an
ideal candidate for next generation security monitoring of power
systems [15]. Fischi et al. [16] has applied ANN for online
contingency screening and ranking and found that ANN has
good potential in terms of speed and accuracy. Lu [17] has ap-
plied feed forward, error back propagation ANNs in protecting
the generator transformer units of power system. One of the
most important aspects of achieving good ANN performance
has proven to be the proper selection of training features to rep-
resent all possible states of the system and presents an enormous
computational exercise for large scale power systems [18].
The main contribution of this paper consists of developing

an online static security assessment (OSSA) module in order to
overcome the large computational overhead of real time static
security assessment procedure .The proposed module utilizes
the composite security index for the fast and accurate
static security evaluation. The proposed OSSA module is ca-
pable of doing three functions. 1) It computes the composite
security index for the given operating condition and pro-
vides security status, 2) compute the composite security index
for all the possible line outage conditions and identifies the crit-
ical contingencies having index values greater than “1” (con-
tingency screening) and 3) the contingency ranking in the de-
scending order of severity based on . The proposed OSSA
module utilizes an ANN module that computes the composite
security index for a particular loading and contingency condi-
tion. The training of the ANNs involves the development of
composite security index for a wide range of loading condi-
tions, for different contingencies. In this work a multi-layer feed
forward network (MLFFN) and radial basis function network
(RBFN) based OSSA modules are developed for IEEE 118-bus
test system.
The remaining part of this paper is organized as follows: A

brief description of the composite security index utilized
in this paper for security assessment and critical contingency
ranking [10] is given in the following section. It is followed by

the proposed ANNmodels for online static security assessment.
The test systems and the simulation results to demonstrate the
effectiveness of the proposed ANN models for security assess-
ment is presented in Section IV. Section V gives the concluding
remarks.

II. COMPOSITE SECURITY INDEX—AN OVERVIEW

In this paper the composite security index defined in terms
of both line flow and bus voltage limit violations is used for se-
curity state classification, online critical contingency screening
and ranking. Two types of limits are defined for bus voltages and
line loadings, namely the security limit and the alarm limit. The
security limit is the maximum limit specified for the bus voltages
and line flows. The alarm limit provides an alarm zone adjacent
to the security limit, which gives an indication of closeness to
limit violations. The alarm zone also provides a flexible means
of specifying the cut-off point for contingency selection based
upon numerically ranked security index [10]. It is also possible
to treat the constraints on the bus voltage and the line flows as
soft constraints, thereby the violation of these constraints, if not
excessive, may be tolerated for short periods of time.
The system is considered insecure if one or more bus voltages

or line flows exceed their security limit. If one or more bus volt-
ages or line flows exceed their alarm limit without exceeding
their security limit, the system is considered to be in the alarm
state. If none of the voltages or line flows violates an alarm limit,
the system is considered secure. This is indicated by an index
value of “0”.
It is assumed that the desirable voltage at each bus is known

and is represented as . The upper and lower alarm limits and
security limits of bus voltages are represented as , ,
and , respectively. The normalized upper and lower voltage
limit violations beyond the alarm limits are defined as in (1):

(1)

where is the voltage magnitude at bus . For each upper and
lower limit of bus voltages, the normalization factor is de-
fined in (2):

(2)

According to (1) and (2), it can be observed that the ratio
will give a value of “0” if the value of the bus voltage is in be-
tween the upper and lower alarm limit. Hence it is classified
as secure. If the value of the bus voltage vector is above the
upper alarm limit or below the lower alarm limit, it gives a value
greater than “0”. Moreover, if the value of the bus voltage is
above the upper security limit or below the lower security limit,
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the value of vector will be greater than “1” and is in in-
secure condition. If the value of vector is in between “0”
and “1”, it is said to be in the alarm limit. Similar explanations
holds good for power flows as well.
For line flows, the limit violation vectors and the normal-

ization factor are defined in the similar manner. Since only
the maximum limits are required to be specified for the power
flow through each line, two types of upper limits are specified
for each line: the alarm limit and the security limit . The
security limit is the specified maximum limit of the power flow
through the line. The normalized power flow limit violation vec-
tors for each line j can be defined as in (3):

(3)

where is the absolute value of the power flow through the
line . The normalization factor for each line is defined in (4):

(4)

In this case also, the system can be classified with respect to
the power flow through the line, into secure, alarm or insecure,
based on the value of vector.
For an N-bus, M line system, there are dimen-

sional normalized limit violation vectors of both bus voltages
and line flows. The concept of hyper-ellipse inscribed within
the hyper-box is used for constructing the scalar valued com-
posite security index from the vector valued limit violation
vectors [10] and it is defined in (5) as

(5)
where “ ” is the exponent used in the hyper ellipse equation.
The value of “ ” is chosen as “2”, because the approximation of
hyper-box to the hyper-ellipse has not improved beyond “ ”
[10].
From the definition of composite security index, the system

is said to be in one of the three states as follows.
1) Secure state if
2) Alarm state if
3) Insecure state if
The contingencies can be ranked in the descending order of

severity based on .

III. ONLINE STATIC SECURITY ASSESSMENT
MODULE USING ANN

In the proposed approach, power system security assessment
against unplanned line outages are done by utilizing the high
adaptation capability of ANNs, as these are better suited to deal
with nonlinear problems. Fig. 1 shows the structure of the pro-
posed OSSA module. The real and reactive power generation
at the generator buses , real and reactive power loads
at all load buses , the voltage magnitudes and
phase angle for all buses are used for describing the system

Fig. 1. Structure of online static security assessment (OSSA) module.

operating point and are chosen as the input for the security as-
sessment module. This module is capable of providing the se-
curity status as well as the critical contingency screening and
ranking in terms of composite security index for the given op-
erating condition.
The proposed OSSA module utilizes an ANN module for

which the loading condition and contingency are the inputs
and composite security index as the output. The contingencies
are represented as a binary number in which “0” represents no
outage condition and “1” represents the outage of the corre-
sponding line. Two types of ANNs viz. MLFFN and RBFN
are used to implement the proposed OSSA module, details of
which are given in the following subsections.

A. Multi-Layer Feed Forward Network (MLFFN)

In this paper, MLFFN consisting of two hidden layers having
nodes with nonlinear activation functions is proposed for power
system security assessment. Each node in one layer connects
with a certain weight to every other node in the following layer.
Real and reactive power demand at various load buses and bi-
nary numbers representing contingency are taken as the inputs
to the MLFFN. The number of inputs mainly depends upon
the topology of the system under consideration. The activation
function used in the hidden layers is the “hyperbolic tangent”
and at the output layer, the linear function is used. The network
is trained with “Levenberg-Marquardt” back propagation algo-
rithm [13] due to its good convergence properties. In order to
obtain the optimum number of neurons in the hidden layer, the
number of neurons in the first hidden layer is varied from 10 to
60 and the second hidden layer from 3 to 10. For each change,
in the number of hidden units, the ANN was trained and the
mean square errors are compared. The number of neurons with
minimum mean square error is selected for the final structure of
MLFFN.

B. Radial Basis Function Network (RBFN)

RBFN is a special class of feed forward neural network and
consists of an input layer, a hidden layer and an output layer.
The network is capable of performing nonlinear mapping of the
input features into the output. The hidden layer consists of neu-
rons with Gaussian activation functions, while the output layer
neurons are with linear activation function. During training, all
the input variables are fed to the neurons in the hidden layer
directly through interconnections with unity weights and only
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the weights between hidden and output layers are to be trained.
Thus, RBFN gives faster convergence than the conventional
MLFFN.

C. Data Generation, Training, and Testing

For the system under consideration, initially the probable
contingencies are listed out. In this work only the line outages
are considered. The training data are generated by varying the
loads randomly between 50 and 150 percentage of their base
case values. For each loading condition the pre and post-outage
bus voltages and line flows are calculated with full iterations
of Newton Raphson (NR) load flow analysis. For each case,
the composite security index is calculated using (5) by taking
the value of “ ” as “2” [10]. Nearly 5000 training sets are
generated for the test system under consideration.
Once the ANNs are trained, the trained module is tested for

various random loading conditions, within the expected range of
load variations. The trained ANNmodule can be used for online
static security assessment module which takes a particular oper-
ating condition in terms of , , , , , and as the
input and provides the security status of the system for the given
operating condition. It can also provide the composite security
index value for all contingencies considered and the critical con-
tingencies identified as those with index value greater than one.
The contingencies can also be ranked in the order of severity
based on the composite security index .

IV. TEST SYSTEMS AND SIMULATION RESULTS

The proposed work aims to develop an online static security
assessment module using the MLFFN and RBFN network ar-
chitectures, which can predict the security state of the system
for a particular operating condition as well as critical contin-
gency screening and ranking based on the composite security
index. In order to investigate the effectiveness of the proposed
method investigations are carried out on different standard test
systems. The simulations results of IEEE 118-bus test system is
discussed in the following subsection.

A. IEEE 118-Bus Test System

The OSSA using MLFFN and RBFN are developed for IEEE
118-bus test system. The system consists of 54 generators and
177 transmission lines and 9 transformers [19]. The single line
diagram of the system is shown in Fig. 2.
All line outages, except the lines which are the only line

connected to a generator bus, are considered and simulated for
system security evaluation. To calculate the composite security
index, both alarm and security limits are to be chosen for each
bus voltages and line flows. 5% and 7% of the desired value
are taken as the alarm limit and security limit respectively for
the bus voltages. For PV buses the specified bus voltage is taken
as the desired bus voltage and for PQ buses it is assumed to be
“1 p.u”. For line flows, 80% of the specified thermal limit is
chosen as the alarm limit.
To develop the proposed OSSA module for IEEE 118-bus

system, the training sets are generated for the proposed ANN
architectures by computing the composite security index for
different contingencies considering random loading conditions

Fig. 2. Single line diagram of IEEE 118-bus test system (source: IIT Power
Group, 2003).

TABLE I
TRAINING PARAMETERS

within the stipulated load ranges. The training parameters used
for both MLFFN and RBFN architectures, to get the best con-
vergence characteristics, are given in Table I. The performances
of the trained MLFFN, RBFN and the performance of the pro-
posed OSSAmodule are presented in the following subsections.
1) MLFFN Based OSSA: The structure of MLFFN devel-

oped for the proposed OSSA consists of the real and reactive
power loads and the binary number which represents the con-
tingency as the inputs and the corresponding composite secu-
rity index as the output. The number of neurons in the hidden
layers, chosen with minimum mean square error is 30 and 10,
respectively, for the respective hidden layers. The time required
to train the MLFFN network is found to be 12 507.8 s. In order
to get the best convergence characteristics, a series of computer
simulations are done and chosen the acceptable one through in-
spection. Fig. 3 shows the variation of mean square error (MSE)
with reference to the number of epochs obtained for training the
MLFFN network. It is shown that the MSE obtained for IEEE
118-bus test system is .
Once the ANNs are trained, the composite security index

values for different loading conditions with different contingen-
cies obtained with the proposed MLFFN architecture are com-
pared with that obtained using (5) which is based on Newton
Raphson load flow (NRLF) analysis. For a light load condition
of 80% of the base load and a heavy load condition of 110%
of the base load, 20 contingencies are selected randomly and
numbered as shown in column 1 of Table II. The corresponding
contingencies are given in columns 2 and 3, respectively. For
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Fig. 3. Training of MLFFN for IEEE 118-bus test system.

TABLE II
RANDOMLY SELECTED CONTINGENCIES FOR TESTING

THE MLFFN AND RBFN FOR DIFFERENT LOADING CONDITIONS

example, at 80% loading condition, contingency number 3 rep-
resents the line outage L 75–77, which is the outage of line con-
nected between buses 75 and 77. All the line outages given in
various Tables can be identified in the same manner.
For each case, the composite security indices obtained with

trained MLFFN network and that calculated using (5), are
plotted against the contingency number as shown in Figs. 4
and 5, respectively. It can be observed from the figures that the
trained MLFFN network performed well and are accurate in
predicting the composite security index, for all contingencies.
2) RBFN Based OSSA: The RBFN is also trained using

the same training set that is developed for MLFFN. In this
case, the number of neurons in the hidden layer is equal to the
number of training sets. The RBFN is trained to an accuracy

Fig. 4. Composite security indices for light load condition (80% of base load).

Fig. 5. Composite security indices for heavy load condition (110% of
baseload).

of . The time required for training the RBFN
was only 294.44 s, which is very less compared to that required
for training the MLFFN. For evaluating the performance, the
composite security indices obtained with trained RBFN are
compared with those computed using (5) based on NRLF
analysis.
In this case also two loading condition are considered, the

base load condition and the light load condition of 90% of the
base load. 20 contingencies are randomly selected for each
loading condition as shown in columns 4 and 5 of Table II.
Figs. 6 and 7 compare the composite security indices obtained
with RBFN with those obtained using (5) for the various con-
tingency cases. It is observed that the trained RBFN is capable
of computing the index values as accurate as that by NRLF
analysis.
3) Online Static Security Assessment Module: In the pre-

vious subsections it is observed that both MLFFN and RBFN
are capable of accurately predicting security status of the power
system for a particular contingency by computing the composite
security index. The trained ANNs can now be used for imple-
menting the proposed OSSA module.
The OSSA module performs the complete security assess-

ment for the given operating condition by predicting the secu-
rity state, screening the most credible contingencies and ranking
them in the order of severity based on composite security index.
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Fig. 6. Composite security indices for light load condition (90% of baseload).

Fig. 7. Composite security indices for base load condition.

According to this index the secure states are represented by an
index value of “0” and the insecure states by “1”. If the index
value is in between “0” and “1” the system is said to be in the
alarm state.
Three sets of operating conditions, normal load, light load

and heavy load, are considered for evaluating the performance
of proposed OSSA. 75% and 120% of the base load has been
taken as the light load and heavy load conditions respectively.
For each loading conditions static security assessment has been
carried out using the proposed OSSA module and conventional
NRLF method using (5). Some 30 contingencies are selected
and ranked in the order of severity based on the composite se-
curity index computed using (5) and are shown in Tables III–V
for different loading conditions.
Table III shows the contingency rank list under light load con-

dition. In this table, column 1 represents the different line out-
ages considered under this operating condition and these contin-
gencies are ranked according to severity using the index value
computed using (5) as given in column 2. The corresponding
index values obtained using the proposed OSSA module that
utilizes the previously trained MLFFN and RBFN are shown
in columns 3 and 4, respectively. For light load conditions it
can be observed that for all the critical contingencies with index
value greater than “1”, the proposed OSSA module based on

TABLE III
CONTINGENCY RANK LIST UNDER LIGHT LOAD
CONDITION FOR IEEE 118-BUS TEST SYSTEM

both network architectures, could also rank them exactly as in
that of column 2.
The contingency rank list under normal load condition is

shown in Table IV. The columns of the table are also ordered
similar to that of Table III. Under Normal load condition also it
can be seen that all contingencies except the last 2, are exactly
ranked as that of column 2.
The rank list under heavy load condition given in Table V

can also be explained in the same manner. In this case it can
be observed that all critical contingencies with indices greater
than “1” are ranked very well as that of column 2 for heavy load
condition. It can be observed from the tables that the proposed
OSSA module designed for a particular system can accurately
perform the static security assessment for all loading conditions.
The effectiveness of the proposed OSSA is also investigated

by evaluating the computation time required for online static
security assessment. In Table VI, the overall computation time
required for conducting static security assessment using con-
ventional NRLF method and the proposed OSSA module are
shown. Column 1 gives the computation time required, if full
iterations of NRLF is used for the security assessment. Tradi-
tionally, for online applications only 1 to 3 iterations are used
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TABLE IV
CONTINGENCY RANK LIST UNDER NORMAL LOAD
CONDITION FOR IEEE 118-BUS TEST SYSTEM

in order to reduce the computation time [9]. It is observed from
[10] that the composite security index computed with 3 itera-
tions of NRLF gives the same result as that with full iteration
and the computation time taken is given in column 2 of Table VI.
In columns 3 and 4 of Table VI, the computation time re-

quired for static security assessment using the proposed OSSA
module utilizingMLFFN and RBFN architectures, respectively,
are given. It can be observed that the proposed OSSA module
is well suited for online applications.

V. CONCLUSION

This paper has proposed a computationally efficient artificial
neural network technique for assessing the security of the power
system against line outages. MLFFN and RBFN have been used
for realizing the online static security assessment module which
can identify the security status, screen the critical contingencies
and rank them in the decreasing order of severity for any op-
erating condition. To accurately identify the security status of
the system the composite security index, which is a function
of both power flow and bus voltage limit violations, developed
by the authors have been used. The training set for ANN ade-

TABLE V
CONTINGENCY RANK LIST UNDER HEAVY LOAD
CONDITION FOR IEEE 118-BUS TEST SYSTEM

TABLE VI
COMPUTATION TIME REQUIRED FOR ONLINE STATIC
SECURITY ASSESSMENT FOR IEEE 118-BUS SYSTEM

quately represents the entire range of power system operating
states and is defined in terms of loading condition as well as
contingencies. The effectiveness of the proposed OSSAmodule
is demonstrated on IEEE 118-bus test system in terms of accu-
racy of computation and reduction in computation time required
for static security assessment. Proposed OSSA based on both
MLFFN and RBFN architectures are capable of accurately as-
sessing the security of the system against outages significantly
faster than the conventional techniques.
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