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Abstract: This paper provides comprehensive
development procedures and final forms of mathematical
models of unified power flow controller (UPFC) for steady—
state, transient stability angd eigenvalue studies. Based on
the developed models, the impacts: of control strategy,
parameters and location of UPFC on power system
operating conditions are discussed. The accuracy of the
developed models is verified through comparing the study
results with those obtained from detailed time-domain
simulation using the Electromagnetic Transients Program
(EMTP).
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1. INTRODUCTION

Unified power flow controller (UPFC) [1,2] can be used for
power flow control, loop-flow control, icad sharing among
parallel corridors, enhancement of transient stability,
mitigation of system oscillations and voltage (reactive
power) regulation. Performance analysis and control
synthesis of UPFC require its steady-state and dynamic
models. Reference [1] introduces a steady-state UPFC
model based on a single, ideal, series voltage source.
Reference [3] utilizes two ideal voltage sources, one in
series and one in parallel as UPFC steady-state model.
The steady-state UPFC model suggested in [4] is based
upon one ideal, series voltage source, and one ideal, shunt
current source.” The above steady-state models are based
on simplifying assumptions and consequently have various
limitations. ~ A two-source UPFC steady-state model
including source impedances is suggested in [5].

The primary objective of this paper is to develop steady-
state and dynamic models of UPFC for power flow analysis,
transient stability investigation and eigen analysis. Typical
applications of the models are presented, and where
applicable the EMTP is used to verify the accuracy of the
developed models.

2, UPFC MATHEMATICAL MODEL

Figure 1 shows single-phase, schematic diagram of the
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power circuit of a UPFC which is composed of an excitation
transformer (ET), a boosting transformer (BT), two three-
phase GTO based voltage source converters (VSCs), and
a dc link capacitor. In Figure 1, m and 3 refer to amplitude
modulation index and phase-angle of the control signal of
each VSC respectively. Figure 2 shows detailed three-
phase circuit diagram of ET, BT and the converters. The
two transformers are identified by their per phase leakage
inductances and resistances. Figure 2 illustrates that each
converter leg is composed of a GTO valve and a diode
valve in antiparallel connection to permit bidirectional
current flow.

In the case of high-voltage applications, where only GTO-
converters are economical, and the switching frequency is
limited to a few hundred hertz, off-ine optimized pulse
patterns are often selected for the converter. The pulse
width modulation (PWM) approach which is used in this
paper encompasses the concept of optimized pulse pattern
schemes. For cost reduction and maximum converter
utilization, PWM-schemes such as space-vector modulation
are applied in practice. As long as the fundamental
frequency components under balanced operating
conditions are concermed, the space-vector approach and
the general PWM approach used in this paper provide the
same mathematical model.

To describe the modelling precedures, let's consider the dc
link, phase ‘a’ of ET, and the corresponding VSC-E arms as
shown in Figure 3. In Fig. 3, rz and ¢ represent per

phase resistance and inductance of ET. In Fig. 3, the
bidirectional switches are identified by ¢z, and {%, which

can be either on or off. r, is the switch on-state resistance.
r¢ also includes valve conduction losses in the analysis.
Sg, (S'z,) is defined as the switching function of switch
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Figure 2: Detailed three-phase UPFC circuit diagram
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Figure 3: Equivalent circuit of phase “a” of ET and VSC-E.

gEa(Q ,Ea) .
and off states of the switch respectively. Based upon the

principle of operation of a VSC, regardiess of the adopted
PWM scheme, SEa and S'ea are always complementary, ie.

Sga (Sg,) 1s either 1 or 0 corresponding to on

Sga+ 8 p~1 (1)

Thus, the behaviour of the cxrcunt of Fig 3 can be
expressed as

EE(diEa/dt)+ rEiEa =V ~VEq 2)

and . V gy =V FH +V Hy (3)
When { g, ison Sz, =1 and Sk, =0
O rr = (igals ¥V dc )SEa (3a)
When { g, is off Sg, =0, gnd Sta=1
0 pa =(iEa?s )Ska ’ (3b)
From (3), (3a) and (3b) oné can deduce

DFH :'(iEars +Udc)SEa +(iEary)S,Ezz (4‘)
Substituting for Sz, from (1) in (4), for vpg from (4) in (3),
and finally for vg, from (3)in (2)

ZE (diEa /dt)z_RE iEa —(\)chEa O py )"H)Ea (5)

where Rp=rgp+r;. Equations similar to (5) for phases ‘'

and ‘¢’ can also be developed. With reference to Fig. 2,

igg *igp +ige =0 and Vg, +VEp +VE.=0. Thus, voltage

Vi, can be obtained by adding equations of the three

phases as given by (6). .

Vi =(~v4c/3) ¥ Sk (6)
i=a,b,c

Substituting for V Hn from (B) in (5), the final expression for

phase ‘a’ is deduced

;E(dlEa/dI)—_RElEa ~VdcSEa +(Udc/3) ZSEI +0 g1 (7)

i=a.b,c

Equations similar to (7) are also developed for phases o’
and ‘c’. The main advantage of expressing (7) in terms of
the generalized switching functions Sg,, Sz and. Sg. is
that it will not be dependent on the selected PWM
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Figure 4: (a) A generalized PWM pattern for phase “a’, (b)
Switching function S, and its' average value a, in one
switching period.

technique. Figure 4(a) shows a generalized PWM
switching pattern for Sg,. The PWM patterns of Sg, and

Sg. are identical to that of Fig. 4a with appropriate phase
shifts. In Fig. 4, the fundamental frequency of the VSC is

., the frequency of the switching function is ©;, and dg,

is the average of Sg, within one penod correspondmg to
the switching frequency Since Sg, is a discrete, periodic
function of time, its Fourier series can be expressed as

SEa=a,+ Z by cos(nwt) - (8)
n

where a, =dg, and b, =(-1)"(2/nm )sin(nndz.

Figure 4(a) also shows variations of ZE; within one period
cofresponding to the system fundamental frequency. The
fundamental component of drs in. Fig. 4(a), which is
referred to as the control signal, is expressed as

Eqa= (mE/Z)cos(CDt~6 E)—-]_r (9)

dgp, and dg. for phases ‘b’ and ‘¢’ are identical to (9)
except for phase shifts of 2n/3 and 4x/3 respectively.
Thus vy, can be calculated from (6) by substituting for
Sgi's In terms of dg,dg, and dg. (note that only the

fundamental component is considered). Then the
calculated vy, and vpy are substituted in (3) to derive the

final expression for v g,

£a ={mpvg;[2)cos(wi -8 g )=Ag cosBg (10)
Final expression for vg, and vg. are identical to (10},
except for phase shifts of 2n/3 and 4r/3. Therefore, with

respect 1o its ac terminals, at the fundamental frequency,
VSC-E is equivalent to a three-phase, balanced, controlled,

voltage source expressed by Vs, Vg, and vVg.
Amplitude, phase-angle and frequency of the three-phase
voltage source are controlled by mg, 8¢ and w of the
control sicjnal (Fig. 4(a)). The mathematical mode! which
governs the behaviour of phase ‘a’ is obtained -by
substituting for vg, from (10) in (2). ’

fg(diEa/dt)=-'REiEa —ApcosQ g Vg, (11)

Similar expressions to that of (11) for phases b’ and ‘c’ are
also deduced.



The mathematical procedures described by (1)-(10) and
the mathematical model of (11) are also applicable for
VSC-B and the boosting transformer of Fig. 2. Thus the
overall mathematical model of VSC-E, VSC-B, ET and BT

of Fig. 2 is expressed by matrix equation

L(di/dt)=-Ri+Q+v (12)

where

L= diag[f EKEEEZBEBIZB]

i= [iEaiEbiEciBaiBbch]

R=diag[RERERERBRBR3]

v= [U EtaV bV Erc =V Bra =V Bib =V Brc |

Q= diag[*AE cos® g — Ag cos(8 g - 2n/3)— Ag cos(@ g —4n/3)
Agcos(® 5)Ap cos®  —2m/3) Agcos(® 5 —4n/3)]

AFp '—'mE‘l)dc/2,A3=m3Udc/2

The dynamics of the dc link capacitor, Fig. 2, is

avge/dt = (cae Yae (13)
where i, in terms of the defined switching functions is

ide =iEdc —iBdc = Z(iEj dgj - isjdsj)
j=a.bc . (1 4)

Equation (14) demonstrates that the effect of each
switching converter on the dc link can be expressed by a
current source. Therefore, the generalized equivalent
circuit of the UPFC, based on (12) and (13), can be
illustrated by Fig. 5. Based on (12) and (13), a state space
representation of the UPFC is

x=Agx+ Byu o (15)
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AL ‘eae  ladc
2%

+

Figure 5: Generalized equivalent model of UPFC

where x= [iEaiEbiEciBaiBbchU de ]T

T
1= [V E1q0 £V Erc =V Bra =V 8ip ~V 81 0]

Elements of A, and B, are given in Appendix A. The
UPFC mathematical model given by (15) is valid for the
frequency range less than the switching frequency o, (Fig.
4).

21  UPFC Steady-State Model

Neglecting UPFC losses, during steady-state operation it
neither absorbs nor injects real power with respect to the
system. Physical interpretation of this statement is that the
voltage of the dc link capacitor remains constant at the pre-
specified value V,.. This constraint must be satisfied by

the UPFC steady-state equations. Thus, the UPFC steady-
state model is deduced from (15) as
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Figu;'e 6:

UPFC single line diagram .
[~z TIea [Vea—Vea]
~Zk Ies | | Ve — Ve
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(16)

where Zg =Rg+ joLg,Zp = Rp + joLg

Ve = (MEVdc/2\f2_)£5 E/VBi= (MBVdc/?«\/E)éa g.(i=ab,c)

Mg, Mp and V,. are the steady-state values of mg,mp and
Vg. Ig's and Ip;'s are phasors of the line currents (Fig.

(2)).

Based on (16), the UPFC single line diagram under a
steady-state condition is given by Fig. 6. The constraint
Pg+ Pz =0 in Fig. 6 implies that:

e no real-power is exchanged between the UPFC and
the system, thus the dc link voltage remains constant
(losses neglected),

e and the two sources are mutually dependent.

Depending upon the UPFC-control strategy and function, its
various power flow models can be deduced from (16) and
Fig. 6 as follows.

2.1.1 UPFC Power Flow Model

Let’'s consider the UPFC of Fig. 7(a) which is used to
maintain a pre-specified power flow from E-bus to B-bus,
and to regulate the B-bus voltage at a specific value. Using
power flow terminology, B-bus is a P-V bus and E-bus'is a

(a) .

UPFC B-Bus
— - Py,

Figure 7: UPFC power flow model
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" P-Q bus, Fig: 7(b). Neglecting . UPFC losses,
Pg, = P, = pre-specified value. 35 and Mp determine Pg,

(as well as Pg) and Vg respectively. Mg and 3¢
determine Qg and V,, respectively. To calculate the UPFC
control variable for the given power flow condition, a power

-flow analysis is performed where the UPFC is modelled as
given in Fig. 7(b). Then, the power flow analysis results
are used to solve the UPFC steady-state equations to
determine 35, Mp, Szand M.

F-S=0 A (17)

where F=[f(Ps)f2(Qz ) f3 (P ) fa (Qar)]|
S=[Per Or: P3: Os: "

f, to f, are nonlinear functions which are deduced from the

UPFC steady-state model and Fig. 6. f, to f, are also given

in Appendix ‘A. Equation (17) is nonlinear and its solution
best obtained by an iterative numericai approach as

uk+l =yk + j-1AS (18)

where u=[83MB,55 ME]T
AS=F-S§ and jis the Jacobian matrix.
2.2  UPFC Dynamic Model

Dynamic model of the power circuit of a UPFC in the abc
(stator) reference frame is also given by (15). The
extended Park’s transformation matrix of (19) is used to
develop time-invariant form of (15) in a two-axis (d-g-o0)
rotatmg reference frame as gwen by (20).

T=diaglP P 2/3] (19)
where P is the 3x3 Park’s transformation matrix [6].

o
Xdgo =AdgoXdgo + BdgoV dgo (20)

T
Xdgo = =1igdiEgiEoiBdlB lBonw
q q q

T
Vdgo = [D EtdV EtgV Et0V BtdV BigV Bro 0]

where

Elements of matrices Ay, and By,are also given in
Appendix A.

2.2.1 UPFC Transient Stability Model

Conventionally, for transient stability studies, except the
electrical circuits of synchronous machine rotors and some
controllers, the electrical network is represented by their
algebraic phasor.equations. Thus the power circuitry of a
UPFC for transient stability studies can be represented by
the phasor equivalent of Fig. 6. However, during transient
studies, the dc link capacitor of UPFC will exchange energy
with the system and consequently its voltage varies. Thus
for transient stability studies the constraint P+ Pz =0 does
not apply. Variation of the dc link voltage is determined by
the UPFC controls and their limits. The UPFC controls and

the corresponding limits are represented as nonlinear

differential equations for transient stability studies.

UPFC
Figure 8: Steady-state diagram of the study system.
2.2.2 UPFC Small-Signal Dynamic Model

* For the purpose of eigen anaiysis, e.g. torsional oscillations

and UPFC controller design, a small-signal model of the
UPFC in a d-q reference frame can be developed from

linearization of (20) about an operating point.

AXdgo = AAxgg0 +BAu (21)

‘ : .
where AXdg = [AZEdAlEqAlEoAleAquAIBoAVdc]

Au=[AmgAmpAS pAS 5]
Elements of A and B are also given in Appendix A.

It should be noted that (21) is accurate for the analysis of
small-signal dynamics in the frequency range lower than
the switching frequency (o ; =2nf; ) adopted for the UPFC.

Since the UPFC switching frequency is usually in the range
of 300 Hz to 500 Hz, the small-signal model of (21) can be
used for investigation of a wide variety of system dynamics,
e.g. low-frequency (0.1-2 Hz) electromechanical modes,
torsional oscillatory modes (5-55 Hz), and second and third
harmonic resonances. [t should be noted that the UPFC
model of (21) does not include the effect of harmonics
generated by the switching strategy. = Therefore, if the
switching pattern results in harmonics which are of
significance with respect tto small-signal dynamics, e.g.
third harmonic, equation (21) cannot accurately represent
the UPFC behaviour. Equation (21) can be simplified if
only low frequency (0.1-2 Hz) electromechamcal modes of
the system are of interest.

3. APPLICATION EXAMPLES AND MODEL
VERIFICATION

Based upon the mathematical models developed in Section
2, this section demonstrates some of the impacts of the
UPFC parameters and control functions on the operation of
power systems. This section also verifies the accuracy of
the UPFC models through comparison of the study results
with those obtained from EMTP studies.

3.1 Steady-State

A 500 kV radial transmission line equipped with a UPFC is
used for the studies. Figure 8 shows equivalent single-line
diagram of the system. The UPFC regulates the power
flow by adjusting magnitude (|vs|) andfor phase-angle
(8 ) of the injected voltage. This mode of operation of the
UPFC is that of a static phase-shifter [2].
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3.1.1 Case-1

The UPFC is located at the middle of the line, i.e.
X=X+xg=0.5 per unit. |Vz| and 85 can be adjusted from 0
to 0.5 per unit and 0° to 360° respectively. |Vz|can be
reghlated from 0.9 to 1.1 per unit. Initially power angle
(6=385-38z) is adjusted at 35°. Figure 9 shows the range
of variations of |Ig| as a function of |Vg| and 85 when
|Ve| =0.5 per unit. Figure 9 illustrates that:

» Variation of electrical quantities (e.g. |/z|) as a resuit
of UPFC control strategy (e.g. control of |Va|, |Ve| and
3 g ) is highly nonlinear and muitiple-valued.

* Proper selection of the UPFC parameters and control
strategy can confine the variations within acceptable
limits (e.g. 0.0<|lg|<0.5). Studies similar to that of

Fig. 9 identifies maximum steady-state values of the
UPFC variables and determines the steady-state
ratings of the UPFC components.

3.1.2 Case-2

Figure 10 shows the impact of the UPFC on the sending-
end and receiving-end complex powers of the study
system. The UPFC is located at the middle of the line. For
each value of |VB| from 0 to 0.5 per unit, 8 5 is varied from
0° to 360°. |Vg| is adjusted at 1.0 per unit. Figure 10
shows that for each value of power transfer (P,) through
the line:

e there can be more than one value of reactive power
exchange at each terminal, and

¢ the magnitude and direction of reactive power flow at
each end depend on the UPFC variables, i.e. |Vg|,

iVE‘ and 531

The shaded areas in Fig. 10 identify minimum reactive
power exchange at the line terminals corresponding to a

set of UPFC selected variables. By controlling |Vg|, the
UPFC can control Qg and Qz. Thus, the complex power

regions of Fig. 10 can be tailored according to the
operational requirements and limitations as further
described in Section 3.1.3.
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Decreasing the leakage reactance (Xg of excitation

transformer narrows the complex power regions of Fig. 10.
If Xg=0, then each region will be shrunken to a line.

Consequently, corresponding to each value of P, Qg and
Qg each will have a single value.

Figunl'e 10 also shows the complex powers at both line
terminals obtained from detailed simulation of the study
system, based on the use of the EMTP. Close agreement
Opu) y

1_'5 Coz ] -

1} Ss

-0.5} Vg=0.01

“«—V5=05

1.5 SR

35 1

Figure 10: Impact of Vgl and 3, on the sending-end
(Ss) and the receiving-end(Sg) power (& = 35°).
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Figure 11: Effects of |Vgl the on the complex
power region of the sending-end .

between the corresponding results from the EMTP and the
UPFC steady-state mode! (Fig. 8) verifies the accuracy of
the developed steady-state model.

3.1.3 Case-3

If §=55-8x is varied from 0° to 90°, corresponding to
each value of 3, a family of complex power regions S (or
Sg). similar to that of Fig. 10, is obtained. All possible
values of S (or §y) can be identified by the closed-surface

0.6 T T T T
Pgor P .

0 02 04 0.6 08 1
Xy or (1-X3)(pw)

Figure 12: Effect of UPFC location on Sgand Sg.
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VSC-B

Figure 13: UPFC control strategy for SSR mitigation.

which encompasses all ¢ (or Sy,) regions. Figure 11 shows
two-such closed-surfaces corresponding to the sending end
when |Vg|=0.9 per unit and |Vg|=1.1 per unit. Figure 11
also identifies complex power regions of the sending end
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Figure 14: Loci of the eigenvalues of the IEEE SSR
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torsional mode.
for 8 =0° and 3 =90°. Figure 11 indicates that for a given
value of power transfer at a prespecified § , the UPFC can
readily control the reactive power requirement of the
sending (and receiving) end. This is achieved by
controlling |Vz| through amplitude modulation index M of

the boosting converter. Figure 11 also compares the

results obtained from EMTP and the steady-state model.

3.1.4 Case-4

Figure 12 depicts the effect of the UPFC location on Sg and
Sp when |Vs| =|Vg|=|Vg|=10 per unit, § =85-8=35° and
|Va|=0.2 per unit. Figure 12(a) indicates that when angle
33=0°, Qp and Qg are noticeably affected by the UPFC
location. :

3.2  Small-Signal Dynamics
The main purpose of this section is to verify the accuracy of

the UPFC linearized model, equation (21), based on
comparing eigen analysis results with the corresponding

EMTP results. This section is also intended to demonstrate -

damping effect of the UPFC on torsional modes of power
systems. The studies are conducted on the IEEE first
benchmark model [7]. The UPFC is located at the sending-
end after the generator step-up transformer.

3.2.1 Case-5

Figure 13 shows the UPFC control diagram to mitigate
torsional oscillations. When no torsional countermeasure is
in -service, the first four torsional modes can become
unstable as compensation level is varied from 0% to 100%
[7]. Figure 14 shows loci of the system modes when the
UPFC is not in service. Figure 14 clearly shows that the -
torsional modes, particularly mede 1, can become
unstable. Figure 15 shows loci of the system modes when
the UPFC is utilized to mitigate torsional modes. Torsional
damping is achieved by modulating real power transfer
through regulation of the dc link voltage. Comparison of
Figs. 14 and 15 shows that the UPFC can  effectively’
provide adequate damping for all torsional modes.

Figure 15 compares the real-part of the eigenvalue of the
first mode obtained from the linearized model (Fig. 14) and
the EMTP simulation of the study system. Close
agreement between the corresponding resuits verifies the
validity of the developed model. Since the linearized UPFC



model (equ. {21)) is deduced from the UPFC large-signal,
dynamic model, equation (20), Figure 15 also is an indirect
verification of the validity of the UPFC large-signal model.

4. .. CONCLUSIONS

This paper outlines a comprehensive and systematic
approach for mathematical modelling of unified power flow
controlier (UPFC). Based upon the outlined approach,
steady-state model, small-signal (linearized) dynamic
model, and state-space, large-signal model of UPFC are
developed. The models are applicable to power flow
studies, eigen analysis, and transient stability
investigations.

The developed formulation is general and independent of
the pulse-width- modulation (PWM) scheme used for the
switching converters of the UPFC as long as fundamental
frequency components of current and  voltage are
concerned.. The main assumption for developing the
models is that power system is symmetrical and operates
under three-phase balanced condition. This is the common
assumption made for power flow, transient stablllty and
eigen analysis of power systems. The developed
procedures and models can be readily simplified and
tailored for representation of GTO based static condensor
(STATCON) and GTO based series capacitor. '

Typicai application examples of the developed models are
also provided. The accuracy and validity of models are
confirmed based on comparing the study results with those
obtained from detailed time domain simulation, using the
Electromagnetic Transients Program (EMTP).
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Appendix A

Non-zero elements of matrix Ag: equ. (15):

g1 =022 =033 =~TE /g Agas =Qgss =age6 = 7/!5.
te]
a g1y =kycos(+8 g )a =k, cos{wx+8 g —120°),
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ag37 =kj cos(@+3 g ~240°),a 447 =k, cos(wt+3 ),
agsy=ky cos(@r+8 5 ~120°),a .67 =k, cos(wi+8 5 ~240°),
ag71 —k3 COS(W+SE) ag72 -k3 CDX((DH'SE "120°)
ag73 =k; CDS((&)H"SE 240° ) ag74 =ky COS(OY+5B)
ag7s=kycos(@r+8 5 ~120°),a 176 =ky cos(wr +8 5 ~240°),
ky=—mg [2Lg ko =mp |2 ks =mg [2Cye kg =—mp[2C,,.
Non-zero elements of matrix Bg, equ. (15):

bei1 =bg22 =bg33 =1/4g, byas =byss =byes =1/£5,bg77 =1/Cye
Elements of vector F, equ. (17):

F1=(VaelVerl/ X 5 )sin(8 5, ~8 5, )+
(Vo |[Verl/ X g )sin(@ g =8 5 )~
"(‘VEr l[VBt l/ Xp )5 ’"(55: —53)

f2= ((XE*'XB)/XEXB)VE:i ~(VeVail/ X p)cos(d s ~8 5, )~
~[VedlVel/ X £ ]eos(8 g 8 £ )+ (Ve Vsl /X p)cos(8 g, —55)

15 =V lVai/X)sin(® e ~8 )+ [Vl Vil X5 sin 5c =5 5)

2 . " .

fa=|V| /XB +gVE: [Vael/ X 5 )cos(8 g =8 g )+
+ ‘VBt nVB !/XB )COS(SBt “5‘3)

Non-zero elements of matrix Adqo' equ. (20):
ajy=azp=—~Rg/lg, 033 "a44-_RB/£B»‘112="a2 =ay=
—Q43=W,a15 "kl CDS »425 —-k] sm E835 "k COSIS
ass=k, sindg,as, -———ék3/2 )cosd g.as,= (3k3/2)sm55,
a53 (3k4/2)c‘0553 as4= (3k4/2)sm53
Non-zero elements of matrix quo, equ. (20):

biy=by =1/4g, by3 =bsy =1/Lp,bss =1/Cyc

Non-zero elements of matrix A, equ. (21)

aj1 =ay ==RpW, [, a33=a44=~RpW,/¢p,

a2 =~ap] =a34 =~a43 =Wy, a5 =ks5 c05O £, Gps = ks sind g,

ass =ke cosd p, ays =ke sind p,as) =k; cosd g, a5y =ky sind g,
as3 =kg cosd p,ass =kg sind p, ks =—w,Mg /24,

ke =W, Mp[28p,k; =0, Mg [2C; ks =—w,Mp[2C,

Non-zero elements of matrix B, equ. (21):

bu——kng 6‘035 blz——kg ME sm5g b21 =—k9Vd sinSE,

byy =—ko M g cosd g, by3 =k1oV; €050 p. b3y =~kio Mg sind p,

b43 —klon sm&B b44 klOMB COS B

b51 k“ (IEd CQSSE +1Eq SIYISE),

b52=—k11ME(1Ed sinSE—IEq COSSE),

bs3 =—k“(13d cosdp+1p, sinSB),

bsy=k; Mg (Iad sinSB—IBqCOSSB),

ky=w, /2L ko=, /2L p ky =00, /2€,
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