
E L S E V I E R Computers and Chemical Engineering 24 (2000) 859-862

Computers
& Chemical
Engineering

www.elsevier.com/locate/compchemeng

PID neural networks for time-delay systems

Huailin Shu a,,, Youguo Pi b

a Department of Electrical and Mechanical Engineering, Guangzhou University, Guangzhou 510091, PR China
b Automation Engineering R & M Center, GuangDong Academy of Sciences, Guangzhou, GuangDong 510070, PR China

Abstract

PID neural network (PIDNN) is a new kind of networks. It consists of three layers and its hidden layer's units are proportional
(P), integral (I) and derivative (D) neurons. PIDNN's weights are adjusted by the back-propagation algorithms and it perform a
perfect function in process control. In this paper, we introduce PIDNN structure and algorithm and give examples in which
PIDNN is used to control time-delay systems. © 2000 Elsevier Science Ltd. All rights reserved.

Keywords: PID neural network; Neurocontrol; Time-delay system

1. Introduction

There are a lot of time-delay systems in industry
processes but it is difficult to design the controllers for
them because the time-delay property. These systems
generally have larger overhead, longer adjusting time
and are not stable. In classical control theory the Smith
method can be used to construct controllers if the
transfer function of the system has been known. But,
the transfer function of a practical system is not easy to
measure or to complete.

As is well known conventional PID controllers have
many advantages so that they are most widely used in
various fields of the industry, especially in the processes
of chemical industry. Although PID controllers have
strong abilities they are not suitable for the control of
long time-delay systems, in which the P, I, and D
parameters are difficult to chose.

Artificial neural networks can perform adaptive con-
trol through learning processes. But there are some
problems, which should be solved in practice. The main
problems are the slow learning speed, the long weight
convergence time and uncertain property.

PID neural network (PIDNN) is a new kind of
networks. It utilizes the advantages of both PID control

* Corresponding author.
E-mail addresses: hlshu@guangzu.edu.cn

youguopi@a.gis.sti.gd.cn (Y. Pi).
(H. Shu),

and neural structure. It consists of proportional (P),
integral (I) and derivative (D) neurons and its weights
are adjusted by the back-propagation algorithms. It can
control different systems through quick learning pro-
cess and has perfect performances (Shu, 1997,
1998a,b,c; Shu & Li, 1998; Shu, 1999a,b.

The rest of the paper is organized as follows. Section
2 presents the structure of PIDNN. Section 3 specifies
the algorithm of PIDNN. System simulation examples
are introduced in Section 4, including the performance
behavior comparing between PIDNN and conventional
PID controllers. Finally, the conclusion is given in
Section 5.

2. Structure of P I D N N

PIDNN consists of a 2-3-1 structure. It has three
layers, which are input-layer, hidden-layer and output-
layer. The input-layer has two neurons, the hidden-
layer has three and the output-layer has only one. The
neurons in the net are proportional (P) neuron, integral
(I) neuron and derivative (D) neuron, respectively.

The input-layer has two P neurons, one receives
system setting input and another connects system out-
put. The hidden-layer has three different neurons, the
first is P neuron, the second is I neuron and the third is
D neuron. The output- layer only has one neuron
which completes the control output duty. The network
structure and the control system are shown in Fig. 1.

0098-1354/00/$ - see front matter © 2000 Elsevier Science Ltd. All rights reserved.
PII: S 0 0 9 8 - 1 3 5 4 (0 0) 0 0 3 4 0 - 9

860 H. Shu, Y. Pi / Computers and Chemical Engineering 24 (2000) 859-862

3. Algorit lun o f P I D N N

3. I. Input layer

In input layer two neurons are P-neurons and their
input-output functions are as follows:

f u!k) ui(k) > 1 x,(k) = - 1 <_ u~(k) < 1 (1)

ui(k) < - 1

where i = 1, 2. k is computer sample time.

3.2. Hidden layer

In hidden layer the neurons inputs are

2

u~(k) = Y~ w,:.x,(k) (2)
i ~ l

where j = 1, 2, 3 and w o. are the net weight from input
layer to hidden layer.

The input-output functions of the neurons in the
hidden layer are different from each other. They are
proportional (P) function, integral (I) function and
derivative (D) function so that they are named as
P-neuron, I-neuron and D-neuron respectively. The
function of P-neuron is the same as that of the input
layer, as follows:

f 1 u'l(k) > 1
X'l(k) = u'l(k) - 1 < ui(k) < 1 (3)

- 1 u ' ~ (k) < - 1

The function of I-neuron is

f 1 x'2(k) > 1
x'2(k) = x '2(k- 1) + u'2(k) - 1 < x'z(k) < 1 (4)

- 1 x ; (k) < - 1

The function of D-neuron is

! 1

x'3(k) = u (k) - u'3(k - 1)
- 1

x;(k) > 1
- 1 _<x; (k)_< 1

x'3(k) < -- 1
(5)

3.3. Output layer

The output layer only has one neuron. The input of
the neuron is

3

u"(k) = ~ Wjo'X~o(k) (6)
:=1

where W:o are net weight from hidden layer to output
layer and its input-output function is proportional (P)
function as follows:

1 uo(k) > 1
xo(k)= uo(k) - l < u o (k) < l (7)

- 1 u o (k) < - 1

3.4. Back-propagation algorithm

The aim of the PIDNN controller is to minimize

J = ~ Eh = % ~ [r (k) -y (k)] 2 (8)
h = l mh=l

where y(k) is system output and r(k) is the system
input.

For the aim we have a back-propagation algorithm
of PIDNN. We use gradient method to change the
weights of PIDNN. After no training and studying
steps, the weights from hidden layer to output layer are

8J
' ' , (9) W:o(no + 1) = Wjo(no) - Vl: OW:o

where r/: is step, and

OJ OJ d E h Oy Ov Ox" ~u'~
(10)

OWj. o OE h ~y 6o Ox o Ou" OW~o

From Eq. (8),

- '~ wz w~ m v
y

Fig. 1. Structure of PIDNN.

H. Shu, Y. Pi / Computers and Chemical Engineering 24 (2000) 859-862 861

1.0 ~ r

0.8. y
0.6

0.4-

0.2.

0.0 I I I I I I I I I
0 20 4 0 6 0 80 100 120 140 160 180 k

Fig. 2. One-step time-delay system responses.

02

0A

0.2

0 10
I I I I P

20 30 40 50aep

Fig. 3. Constringency curve of aim J of one-step time-delay system.

d___J__J dEk_ 2 ~ [r(k) - y (k) l (11)
dEk ~Y m k = l

and

dv dxo 1 (12)
d ¢! tt

Xo Uo

From Eq. (6)

duk'° - xk(k) (13)
dG-o

In Eq. (10), dy/dv cannot be directly decided because
we do not know the transfer function of the system,
For the solution, we use the following equation

dy, A y = y (k + 1) - y (k)
(14)

Ov Av v (k) - v (k - 1)

Thus from Eqs. (11-14), we can write

dJ _ 2 ~ [r (k) - y (k)]
dWko m k= 1

y(k) - y(k - 1) xk(k)
v(k) ---v-(-ff -Z- 1)

= - ~ 6j(k)xk(k) (15)
k = l

From input-layer to hidden-layer the connect weights
are

dJ
w~j(no + 1) = wo.(no) - rli dw U (16)

where ~/; is step and

OJ dJ dEk dy dv dx~ du" dx k du k (17)
dw o. dEk dy dv dxo du" dx k du k dw o.

where

dJ dEkdy dv dXo a,(k) (18)
dG dy dv dx" du; kz~= 1

which come from Eq. (15), and

dug t
dx k W)o (19)

from Eq. (6) and

dx k ~ Ax k _ xk(k) - xk(k - 1)
- (2 0)

du k Au k u k (k) - u k (k - 1)

and

duj = xi(k) (21)
dw o.

from Eq. (2). Thus the following equation can be
written from Eqs. (18-21).

dJ ~ xk(k) - xk(k - 1)
= - ,, 6j(k) xi(k)

dWij k = l u;(k)--uk(k ~)

= - ~ 5g(k)xi(k) (22)
k = l

4. Examples

4.1. One-step system

A one-step time-delay system is described by the
following function.

y(k + 1) = 0.368y(k) + 0.632v(k - 10) (23)

and system input is

r(k) = l(k) (24)

P I D N N is the controller and let wlj(0)= + 1,
w2j(O) = - 1, where j = 1, 2, 3, and let Wko(0) = 0.1.
After 50 learning steps, the system responses are shown
in Fig. 2.

From Fig. 2 we know that the system has perfect
performance. The dynamic response is quick and there
is little over-adjust. The static error is zero. The system
is stable. The P I D N N can complete the one-step time-
delay system control duty.

The constringency curve of aim J, Eq. (8), of this
one-step time-delay system is shown in Fig. 3.

From Fig. 3, it is obvious that the P I D N N has
monotonous constringency property and the constrin-
gency time is very short.

862 H. Shu, Y. Pi / Computers and Chemical Engineering 24 (2000) 859-862

4•2. Two-step system

A two-step system is described as the following
function.

y(k + 1) = 1.368y(k) - 0.368y(k - 1) + 0.0092v(k - 10)

+ 0.066v(k - 11) (25)

The system input is Eq. (24) and PIDNN is used as
controller• After 50 learning steps, the system responses
is shown in Fig. 4.

Fig. 4 proved that PIDNN can adapt different sys-
tems through learning process. The control system, also
has better performance for the long time-delay two-step
object.

1.0 y ~

0,8.

0.6.

0.4-

0.2-

0.0 t I I I 20 40 60 80 I I ; ; : ,~
1 0 0 120 140 160 180 k

Fig. 4. Two-step time-delay system.

0•13tJ

0 10 20 30 40 step

Fig. 5. Constringency curve of aim J of two-step time-delay system.

I.

I.(]

0.$

0.~

0.4

0.21

0.0

r Y

20 40 60 S0 100 120 J160 I150

Fig. 6. Conventional PID control two-step time-delay system re-
sponses.

The constringency curve of aim J, Eq. (8), of this
system is shown in Fig. 5. This monotonous reducing
curve proved that PIDNN can finish the learning pro-
cess quickly.
4.3. Performance of conventional PID controller

As a comparison, we use a conventional PID con-
troller to control the two-step time-delay system as Eq.
(25). The PID controller function is Eq. (26) and the
system step responses are shown in Fig. 6.

k

u(k) = Kpe(k) + KI ~ e(i) + KD[e(k) - e(k - 1)]
i = l

k
= 0.0115e(k) + 0.00575 ~ e(i)

i = 1

+ 0.05175[e(k) - e(k - 1)] (26)

The result above tells us that conventional PID con-
troller cannot suit to control the long time-delay sys-
tem. The system is unstable. The result proved that
PIDNN has much better properties than conventional
PID controller.

5. Conclusions

PIDNN is a multilayered neural network and its
structure is simple. PIDNN has abilities to control
different time-delay system and has perfect perfor-
mance. Using PIDNN we needn't measure or calculate
the system parameters. The whole adjusting process is
completed through self-learning and adaptive process.
PIDNN has short convergence time and quick learning
speed and it can be used in practical process.

References

Shu, H. L. (1997). Study on the neural PID network based cascade
control system. Automation & Instrumentation (China), 5, 5-7.

Shu, H. L. (1998a). Self-study decouple PID neural network control
systems. Computation Technology and Automation (China), 7,
43 -46.

Shu, H.L. (1998b). The analyze of PID neurons and PID neural
networks. Proceedings of "98 Chinese Control Conference. (pp.
607-613). vol. 9. China:Lingbo.

Shu, H. L. (1998c). PID neural network for decoupling control of
strong coupling multivariable time-delay systems. Control Theory
and Application (China), 15(6), 920-924.

Shu, H. L., & Li, Z. (1998). The multivariable decouple control
system based on multilayer network with PID neurons. Process
Automation Instrumentation (China), 19(3), 24-27.

Shu, H. L. (1999a). Analysis of PID neural network multivariable
control systems. Acta Automatica Sinica (China), 25(1), 105-111.

Shu, H.L. (1999b). PID neural network control for complex systems.
Proceedings of the International Conference on Computational
Intelligence for Modeling, Control and Automation. (166-171).
Amsterdam: IOS Press.

