دانلود رایگان مقاله انگلیسی بهبود انتخاب سرویس وب با استفاده از کیفیت حفاظت فازی به همراه ترجمه فارسی
عنوان فارسی مقاله: | بهبود انتخاب سرویس وب با استفاده از کیفیت حفاظت فازی |
عنوان انگلیسی مقاله: | Improving Web Service Selection using Fuzzy Quality of Protection |
رشته های مرتبط: | مهندسی کامپیوتر، مهندسی فناوری اطلاعات، اینترنت و شبکه های گسترده و امنیت اطلاعات |
فرمت مقالات رایگان | مقالات انگلیسی و ترجمه های فارسی رایگان با فرمت PDF میباشند |
کیفیت ترجمه | کیفیت ترجمه این مقاله خوب میباشد |
توضیحات | ترجمه صفحات 1 و 2 این مقاله موجود نمی باشد. |
نشریه | IJITEE |
کد محصول | f310 |
مقاله انگلیسی رایگان |
دانلود رایگان مقاله انگلیسی |
ترجمه فارسی رایگان |
دانلود رایگان ترجمه مقاله |
جستجوی ترجمه مقالات | جستجوی ترجمه مقالات |
بخشی از ترجمه فارسی مقاله: 5-آسیب پذیری و طبقه بندی وزنی |
بخشی از مقاله انگلیسی: V. VULNERABILITY AND WEIGHT CLASSIFICATION Fuzzy logic sets are based on linguistic rules to include developer expertise into modeling the threat. In this model Mamdani inference method was used to capturing the expert knowledge in a more intuitive, human-like manner, and for the aggregation of the fuzzy values using centroid technique was exploited for the defuzzification. AND rules are trust values are tightly coupled with one another, i.e dependent on each other. OR rules and a combination of OR and AND rules are used for loosely coupled variables only. The number of rules is decided by an expert who is familiar with the system to be modeled. However, no expert is available and the number of membership functions assigned to each input qualities is chosen empirically by examining the desired input-output data [19]]. However, in our case, with a relatively small set of rules and only six input and one output variables are defined. FUZZY RULES: Six fuzzy inputs like Spoofing, Tampering, Repudiation, Information disclosure, Denial of service, Elevation of privilege then fuzzy output is Trust Rating Rate. Fuzzy rules are implemented below for STRIDE model to test each web service into risk evaluation. IF (Spoofing is Low) AND (Tampering is Low) AND (Repudiation is Low) AND (Information disclosure is Low) AND (Denial of service is Low) AND (Elevation of privilege is Low) THEN (Trust Rating=Very Low). VI. TRUST EVALUATION In order to evaluate the robustness of the chosen fuzzy approach, a comparison with the weighted approach is conducted for STRIDE cases given in table 1 which service providers are deceiving users with wrong trust values [20]. The first steps is to take the crisp inputs (STRIDE) and are fuzzified against the appropriate linguistic fuzzy sets to determine the degree to which these inputs belong to each appropriate fuzzy set. This crisp input is always a numeric value. The fuzzified inputs are applied to the antecedents of the fuzzy operator to obtain a single number that represents the result of the antecedent evaluation. Membership function says each potential threat that is mapped to a membership value between [0, 1] for five linguistic terms are assigned for each threat as Very low, Low, Rather low, Medium Rather high, High, and Very high. At last the input fuzzy set transforming a fuzzy output of a fuzzy inference system into a crisp output. According to the vulnerabilities and weights classifications above, the threat value of STRIDE are exclusive vulnerability are gotten for each web service. After weighted summation , the final threat level is achieved for each web service. Then the overall rank can be determined by membership function. The specific formulas stands for the threat value of web service security, O(R) stands for the final overall score threat value. |