دانلود رایگان مقاله انگلیسی شناسایی نشانگر های زیستی قلبی بدون برچسب با استفاده از سنسور های SIS نوری به همراه ترجمه فارسی
عنوان فارسی مقاله: | شناسایی نشانگر های زیستی قلبی بدون برچسب با استفاده از سنسور های SIS نوری |
عنوان انگلیسی مقاله: | Ultrasensitive, label-free detection of cardiac biomarkers with optical SIS sensor |
رشته های مرتبط: | زیست شناسی، پزشکی، بیوشیمی، انفورماتیک پزشکی، قلب و عروق |
فرمت مقالات رایگان | مقالات انگلیسی و ترجمه های فارسی رایگان با فرمت PDF میباشند |
کیفیت ترجمه | کیفیت ترجمه این مقاله خوب میباشد |
توضیحات | ترجمه بعضی بخش های مقاله موجود نیست. |
نشریه | الزویر – Elsevier |
کد محصول | f285 |
مقاله انگلیسی رایگان |
دانلود رایگان مقاله انگلیسی |
ترجمه فارسی رایگان |
دانلود رایگان ترجمه مقاله |
جستجوی ترجمه مقالات | جستجوی ترجمه مقالات |
بخشی از ترجمه فارسی مقاله: انفارکتوس های شدید میوکاردی(MI) یکی از مهم ترین علت های مرگ و میر و تلفات در سراسر جهان میباشد و تشخیص سریع و به موقع آن میتواند امکان زنده ماندن را افزایش دهد. در این کار، ما یک روش ساده، حساس و بدون برچسب و راه حل های سنسور های سیلیکن غوطه ور در محلول (SIS) مبتنی بر شرایط بدون انعکاس(NRC) برای موج های پلاریزه ی P برای تشخیص زود هنگام MI، استفاده کرده ایم. سنسور های SIS لایه های پلیمری دی الکتریک نازک بر روی سطح سیلیکنی هستند که میتوان آن ها را برای کاربرد های مختلف مورد استفاده قرار داد. در NRC، سنسور های SIS به شدت حساس به افزایش ضخامت لایه های زیستی بر سطح سنسور هستند در حالی که نسبت تغییر شاخص انکسار محیط واسط مستقل میباشد. ازین رو، سیگنال های SIS از نظر از نویز های گرمایی مستقل بوده میباشد که این موضوع بر خلاف سنسور های مبتنی بر رزونانس پلاسما میباشد. همچنین ، هیچ نیازی به سیگنال مرجع که اندازه گیری ها را ساده کند وجود ندارد. در اینجا، تکنولوژی SIS برای بررسی دو موضوع در تشخیص MI مورد استفاده قرار گرفته است : حساسیت بالا با ارزیابی مستقیم و توانایی اندازه گیری در سروم انسان. پروتئین های میوگلوبین، کیناز کراتین MB، و تروپونین قلبی (cTnI9 به عنوان نشانه های زیستی قلبی مورد استفاده قرار گرفته است. ما میتوانیم گستره ی غلظت های مختلفی را بر اساس محدوده های اندازه گیری های 5 و 10pg/ml برای cTnI در PBS و سروم خونی، به ترتیب اندازه گیری کنیم. پاسخ زمانی حدود 5 دقیقه میباشد. این روش جدید یکی از کاندید های مناسب برای کاربرد های مقرون به صرفه میباشد. |
بخشی از مقاله انگلیسی: Abstract Acute myocardial infarction (MI) is the leading cause of high mortality and morbidity rate worldwide, early and accurate diagnosis can increase the chances of survival. In this work, we report a simple, ultrasensitive, label-free, and high-throughput solution immersed silicon (SIS) immunosensor based on non-reflection condition (NRC) for p-polarized wave for early diagnosis of MI. SIS sensor chips are just a thin dielectric polymer layer on the silicon surface, which can be functionalized for specific application. At NRC, SIS sensors are extremely sensitive to the growing thickness of a bio-layer on the sensor surface while independent of refractive index change of the surrounding medium. Therefore, SIS signal is free from thermal noise, unlike surface plasmon resonance based sensor. Also, there is no need of reference signal which facilitates fast and accurate interaction measurement. Here, SIS technology is applied to tackle two issues in MI diagnosis: high sensitivity with the direct assay and the ability to measure in human serum. Myoglobin, creatine kinase-MB, and cardiac troponin I (cTnI) proteins were used as the MI biomarkers. We were able to measure over a broad concentration range with the detection limit of 5 and 10 pg/ml for cTnI in PBS and blood serum, respectively. The response time is about 5 min. This novel technique is a suitable candidate for cost effective point-of-care application. 1. Introduction Acute myocardial infarction (MI), commonly called as heart attack, is irreversible damage to the heart cells caused by insufficient blood supply due to blockage in the coronary arteries. In 2012, cardiovascular diseases took nearly 17.5 million lives which were 31% of total global death, among them 7.4 million were due to coronary heart diseases and the number is growing (WHO, 2015). The MI diagnosis mostly relies on its symptoms of severe chest pain or any other anginal discomfort. However, nearly 28% of men and 35% of women do not show any of these symptoms (Gutterman, 2009), known as the silent MI, are at high risk. The most common tests include electrocardiography (ECG) (Richard et al., 2012; Ahmed et al., 2007) and magnetic resonance imaging (Ahmed et al., 2013) in combination with the stress test. These methods suffer several disadvantages such as non-specificity of ST segment changes in ECG, the need of skilled technician, human error source, and time-consuming. Early, accurate, and fast diagnosis can improve risk stratification and treatment, especially during perioperative procedures, which could increase the survival rate. Certain proteins are released into the bloodstream when heart muscles get damaged, known as cardiac biomarkers. Recognition, quantification, and temporal behavior of these markers proven to be a best noninvasive tool for MI diagnosis (Janota, 2014; Jaffe et al., 2006). Among them, troponin complex regulates the muscle contraction, made up of three protein subunits: troponin I; inhibits binding of myosin with actin, troponin T; interact with tropomyosin, and troponin C; binds Ca2þ (Katrukha, 2013). Cardiac troponin I and T (cTnI and cTnT) shows high myocardial specificity and clinical sensitivity for MI (Daubert and Jeremias, 2010; Babuin and Jaffe, 2005), and remains in a bloodstream for prolonged time (Adams et al., 1993) as compared to other cardiac biomarkers. Therefore, they are considered as the gold standard in the MI diagnosis. The cTnI and cTnT can provide similar information about myocardial necrosis (Jaffe et al., 2006). However, cTnI shows small but significant superiority in diagnostic capability than cTnT in the early stage of MI (Gimenez et al., 2014). We used cTnI along with creatine kinase-MB isoform (CK-MB) and myoglobin proteins as the MI biomarkers in this work. Even though myoglobin and CK MB show insufficient myocardial specificity but their behavior can be use as a supportive information in early diagnosis and as an evidence of reinfarction. Biosensors are broadly categorized based on optical and electrical transducing techniques. Electrochemical biosensors detect biological species in terms of change in conductance (Piao et al., 2014), capacitance (Lee et al., 2016), or impedance (Radhakrishnan et al., 2014) on interaction with sensor surface. Fabrication processes of the high-sensitive (hs) electrochemical sensor devices are complex, which need expensive setup such as clean-room (Ventra and Taniguchi, 2016; Ma et al., 2013; Lee et al., 2014). Surface plasmon resonance (SPR) based biosensor are the most studied (Homola, 2008; Park et al., 2014; Lapage et al., 2013) and commercialized (Biocore, 2016) optical biosensors. SPR technique was combined with photonic crystals (Zhang et al., 2014), waveguide (Jin et al., 2016), oxide nanostructures (Tereshchenko et al., 2016), and many other signal amplification methods (Qureshi et al., 2012) to increase their sensitivity and stability. Be as it may, SPR sensors suffer from ineluctable thermal noise (Nizamov and Mirsky, 2011) which restrict their use where low molecular weight and low concentration detection involved. The methods used for signal amplification and/or to suppress thermal noise makes device structure complex and expensive. There is a need of a simple and cost effective alternative with comparable sensitivity. Here, we developed the first hs-cTnI direct assay SIS-based sensor. The sensing platform is based on the non-reflecting condition (NRC) for p-polarized wave (pseudo-Brewster angle) where ellipsometric angles ( Ψ, Δ) are highly sensitive to the overlayer thickness. Simplicity is the best feature of SIS technology. The SIS sensor chip is just a spin-coted thin dielectric polymer layer on the silicon substrate, which can be functionalized to detect a variety of biomolecules such as peptides, proteins, and DNA via affinity binding. |