دانلود رایگان مقاله انگلیسی بخشهای میتوکندری به همراه ترجمه فارسی
عنوان فارسی مقاله: | بخشهای میتوکندری |
عنوان انگلیسی مقاله: | The mitochondrial compartment |
رشته های مرتبط: | زیست شناسی، میکروبیولوژی، علوم سلولی و مولکولی، ژنتیک |
فرمت مقالات رایگان | مقالات انگلیسی و ترجمه های فارسی رایگان با فرمت PDF میباشند |
کیفیت ترجمه | کیفیت ترجمه این مقاله پایین میباشد |
نشریه | NCBI |
کد محصول | f300b |
مقاله انگلیسی رایگان |
دانلود رایگان مقاله انگلیسی |
ترجمه فارسی رایگان |
دانلود رایگان ترجمه مقاله |
جستجوی ترجمه مقالات | جستجوی ترجمه مقالات زیست شناسی |
بخشی از ترجمه فارسی مقاله: میتوکندریها، اندامهای حیاتی هستند که عملکردهای اساسی دارند که در محدوده سنتز ATP تا مشارکت فعال در مرگ برنامهریزی شده سلولی را شامل میشود که حداقل از شش بخش تشکیل شده است. غشای بیرونی، غشای لایه درونی، فضای بین غشا، غشاهای بلوری، فضای بین بلوری و ماتریس (شبکه) میباشد و میتوکندریها ساختار داخلی پویا و پیچیدهای دارند. این پویایی داخل در چند ریختی بودن و تحرکات میتوکندری بیان میگردد. میتوکندری DNAخودش را دارد (mtDNA) که تعداد اندکی از ژنهای حیاتی را کدبندی میکند. اما این نقش به عنوان یک جهش ژنتیکی با توجه به نقش میتوکندری در بیوانرژی از طریق انتقال الکترونی باعث تشکیل گونههای اکسیژن واکنشی (ROS) میشود که آسیبهایی در DNA میتوکندری را ایجاد میکند. مقدمه: تقسیم و نظریهی شموسمزی: |
بخشی از مقاله انگلیسی: Abstract Mitochondria are vital organelles that perform a variety of fundamental functions ranging from the synthesis of ATP through to being intimately involved in programmed cell death. Comprised of at least six compartments: outer membrane, inner boundary membrane, intermembrane space, cristal membranes, intracristal space, and matrix, mitochondria have a complex, dynamic internal structure. This internal dynamism is reflected in the pleomorphy and motility of mitochondria. Mitochondria contain their own DNA (mtDNA), encoding a small number of vital genes, but this role as a genetic vault is not compatible with the role of mitochondria in bioenergetics since electron transport results in the generation of reactive oxygen species (ROS) that induce lesions in the mtDNA. It is hypothesized that ROS shape the morphological organization of the higher plant cell mitochondrial population into a discontinuous whole, and that ROS are a selective pressure affecting the organization of the mitochondrial genome. This review describes how inter- and intra-mitochondrial compartmentalization underpins the biology of this complex organelle. Introduction Mitochondria are highly dynamic, pleomorphic organelles composed of a smooth outer membrane surrounding an inner membrane of significantly larger surface area that, in turn, surrounds a protein-rich core, the matrix. Although mitochondria contain their own genome and proteinsynthesizing machinery (Leaver et al., 1983; Unseld et al., 1997; Gray et al., 1999) they are only semi-autonomous: the majority of mitochondrial polypeptides are encoded in the nuclear genome, synthesized in the cytosol and imported into the mitochondria post-transcriptionally (Unseld et al., 1997; Whelan and Glaser, 1997; Duby and Boutry, 2002). The role of the mitochondrion in the synthesis of ATP formed by oxidative phosphorylation is well established (Saraste, 1999) and, in addition, mitochondria are involved in numerous other metabolic processes including the biosynthesis of amino acids, vitamin cofactors, fatty acids, and iron-sulphur clusters (Mackenzie and McIntosh, 1999; Bowsher and Tobin, 2001). Apart from the role of the mitochondrion in ATP synthesis and various biosynthetic pathways the mitochondrion is one of three cell compartments involved in photorespiration (Douce and Neuburger, 1999), is implicated in cell signalling (Vandecasteele et al., 2001; Logan and Knight, 2003), and has been shown recently to be involved in programmed cell death (Jones, 2000; Youle and Karbowski, 2005). This review deals with the complex biology of the mitochondrion and describes how various levels of compartmentalization within the mitochondrion and cellular mitochondrial population as a whole (the chondriome) underpin the multiple functions of this vital organelle. Although focused on the higher plant mitochondrial compartment, frequent reference will be made to studies using non-plant model organisms. In some cases, this is simply due to a paucity of information about specific aspects of plant mitochondrial biology; in all cases it is because I believe the information is of fundamental relevance. A short article such as this can only provide a brief overview of the importance of compartmentalization to the life of the mitochondrion. A great deal has been left out (e.g. co-ordination of the mitochondrial and nuclear genomes, control of protein import, the mitochondrial proteome, biochemical defence against ROS, amongst other topics) and it is possible, even likely, that my choices of topics to include might not be of interest to all with an interest in mitochondria but, in the end, this is a personal view of the mitochondrial compartment. Compartmentalization and the chemiosmotic theory The vast majority of biological energy (ATP) production is associated with energy-transducing membranes: the prokaryotic plasma membrane of bacteria and blue-green algae, the thylakoid membranes of chloroplasts, and the inner mitochondrial membrane. The energy-transducing membrane is central to the chemiosmotic theory that explains the basic mechanism of biological energy production, whereby ATP production is coupled to the controlled dissipation of a proton electrochemical gradient (proton motive force). The membrane allows compartmentalization of protons, via their vectorial transport across the membrane, by the action of a primary proton pump(s). In mitochondria the primary proton pumps comprise complexes I, III, and IV. These primary pumps generate a high gradient of protons that forces a secondary pump (the ATP synthase complex) to reverse, energized by the flow of protons ‘downhill’, thereby synthesizing ATP from ADP and Pi. Any proton leak across the membrane would cause a short-circuit, destroy the compartmentalization of protons and uncouple the proton motive force from the ATP synthase. The energy-transducing membrane must, therefore, be essentially closed and have a high resistance to proton flux. |