دانلود رایگان مقاله انگلیسی یک پلیمر الکل کافئیل در بذر گیاهان به همراه ترجمه فارسی
عنوان فارسی مقاله: | یک پلیمر الکل کافئیل در بذر گیاهان |
عنوان انگلیسی مقاله: | A polymer of caffeyl alcohol in plant seeds |
رشته های مرتبط: | زیست شناسی، کشاورزی، مهندسی پلیمر، پلیمریزاسیون، علوم گیاهی، علوم باغبانی، علوم و تکنولوژی بذر و بیوشیمی |
فرمت مقالات رایگان | مقالات انگلیسی و ترجمه های فارسی رایگان با فرمت PDF میباشند |
کیفیت ترجمه | کیفیت ترجمه این مقاله پایین میباشد |
توضیحات | ترجمه این مقاله به صورت خلاصه انجام شده است. |
نشریه | Pnas |
کد محصول | f244 |
مقاله انگلیسی رایگان |
دانلود رایگان مقاله انگلیسی |
ترجمه فارسی رایگان |
دانلود رایگان ترجمه مقاله |
جستجوی ترجمه مقالات | جستجوی ترجمه مقالات |
بخشی از ترجمه فارسی مقاله: لیگنین ها پلیمرهای فنیل پروپانوئیدی پیچیده ای هستند که با دیواره ثانویه سلول های گیاهی ارتباط دارند. لیگنین ها ابتدا از طریق پلیمریزاسیون اکسید شونده سه منولیگنولوز ایجاد می شوند. از این رو الکل هیپوکسی ساکسیل که محصولات بیوسنتزی متیل دار ناقصی را نشان می دهند 5- هیدروکسی فریل مشخص نگردیده است که در لیگنین های آنکوسیرم مشاهده شده است. اما لحاظ کردن الکل کافئیل بیان نگردیده است. ما در این جا وجود یک هموپلیمر الکل کافئیل در روکش های بذر گیاهان تک لپه و دو لپه ای را بیان کرده ایم. این پلیمر طی مراحل اولیه رشد بذر در Vanilla orchid و غلظت های بالایی ددر روکش بذر قرار دارد و در چند عضو Cactacase هم دیده می شود. لیگنین در بخش های دیگر گیاه وانیل هم از کونفیل و الکل سیناپیل فتوسنتز شده است. برخی گونه های Cact1 فقط دارای لگنین C در بذر خود می باشند درحالیکه بقیه فقط لیگنین سرینگیل/گواسیل دارند. تحلیل اسپکتروسکوپی CD هیچ فعالیت اپتیکال پلیمر بذر را نشان نداد. این داده ها نشان می دهد که پلیمر C لیگنین در شرایط واقعی از طریق رادیکال اکسید شوند ترکیبی ایجاد شد که تحت کنترل شیمیایی ساده است که مکانیسمی مطابق با بیوسنتز کلاسیک لیگنین می باشد. |
بخشی از مقاله انگلیسی: Lignins are complex phenylpropanoid polymers mostly associated with plant secondary cell walls. Lignins arise primarily via oxidative polymerization of the three monolignols, p-coumaryl, coniferyl, and sinapyl alcohols. Of the two hydroxycinnamyl alcohols that represent incompletely methylated biosynthetic products (and are not usually considered to be monolignols), 5-hydroxyconiferyl alcohol is now well established as incorporating into angiosperm lignins, but incorporation of caffeyl alcohol has not been shown. We report here the presence of a homopolymer of caffeyl alcohol in the seed coats of both monocot and dicot plants. This polymer (C-lignin) is deposited to high concentrations in the seed coat during the early stages of seed development in the vanilla orchid (Vanilla planifolia), and in several members of the Cactaceae. The lignin in other parts of the Vanilla plant is conventionally biosynthesized from coniferyl and sinapyl alcohols. Some species of cacti contain only C-lignin in their seeds, whereas others contain only classical guaiacyl/syringyl lignin (derived from coniferyl and sinapyl alcohols). NMR spectroscopic analysis revealed that the Vanilla seed-coat polymer was massively comprised of benzodioxane units and was structurally similar to the polymer synthesized in vitro by peroxidase-catalyzed polymerization of caffeyl alcohol. CD spectroscopy did not detect any optical activity in the seed polymer. These data support the contention that the C-lignin polymer is produced in vivo via combinatorial oxidative radical coupling that is under simple chemical control, a mechanism analogous to that theorized for classical lignin biosynthesis. Lignins are abundant phenylpropanoid polymers produced primarily from oxidative polymerization of three 4-hydroxycinnamyl alcohols differing in their degrees of methoxylation (Fig. S1). Lignins occur mostly in vessels, tracheids, and fibrous tissues of vascular plants where they bind, strengthen, and waterproof cell walls to provide mechanical support, enhance water transport, and help ward off pathogens and pests. The biosynthesis and bioengineering of cell wall lignins, and their chemical and mechanical properties, have attracted significant attention because lignin hinders agro-industrial processes, such as chemical pulping of woody crops (1), forage digestion by livestock (2), and conversion of lignocellulosic plant biomass into liquid biofuels (3, 4). In addition, the variability of biosynthesis, and thereby the structures of various lignins, is considered to be closely correlated with the diversity and evolution of land plants (3, 5–12). During lignin biosynthesis, the monolignol precursors are functionalized by aromatic hydroxylation and O-methylation (as well as successive side-chain reductions) to generate monolignols differing in their aromatic substitution patterns (Fig. 1A and Fig. S1). Natural lignins are generally composed of p-hydroxyphenyl (H), guaiacyl (G), and syringyl (S) units, that are biosynthesized by polymerization of the three primary monolignols, p-coumaryl, coniferyl, and sinapyl alcohols, respectively; natural angiosperm lignins have only low levels (<∼2%) of H-units. Catechyl (C) and 5-hydroxyl guaiacyl (5-OH-G) units that may derive from polymerization of the corresponding caffeyl and 5-hydroxy coniferyl alcohols (Fig. 1A and Fig. S1) are not found in “normal” lignins. Extensive studies have revealed the essential plasticity of lignin biosynthesis (6, 10, 12–15), and support the concept that lignin polymerization results from a combinatorial radical coupling process that is under simple chemical control (14, 16, 17). Thus, lignin monomer composition is largely determined by monolignol availability and, under certain circumstances, this permits incorporation of the “unusual” C and 5-OH-G monolignols into the polymer. For example, 5-hydroxyconiferyl alcohol participates in lignification in various angiosperm plants in which caffeic acid/5-hydroxyconiferaldehyde O-methyltransferase (COMT), the key enzyme for conversion of monolignol precursors from the 5-OH-G to the S aromatic level (18, 19), is down-regulated. The combination of a mutation in the gene encoding COMT with overexpression of ferulate 5-hydroxylase, which catalyzes hydroxylation of G to 5-OHG aromatic level precursors, generates lignins largely composed of 5-OH-G units in benzodioxane structures (20, 21). Similarly, downregulation of caffeoyl-CoA O-methyltransferase (CCoAOMT), for conversions from C to G aromatic-level precursors, introduces low levels (less than 10%) of C units into cell wall lignins in trachearyelement cultures of the gymnosperm Pinus radiata (22). However, down-regulation of CCoAOMT in angiosperm species, such as Arabidopsis, alfalfa, poplar, and tobacco, does not result in the incorporation of C units into lignin (23–27), and neither does downregulation of both monolignol methylation enzymes (28). Here we report a lignin in the monocotyledonous angiosperm Vanilla orchid (Vanilla planifolia) that is naturally biosynthesized from the unusual C monolignol, caffeyl alcohol. Similar polymers are found in the seeds of other vanilla species and several species of cacti (which are dicots). The V. planifolia polymer was structurally characterized by various chemical methods, 2D NMR spectroscopic techniques, and gel-permeation chromatography (GPC). All evidence indicates that the C-lignin is formed by combinatorial oxidative radical coupling under simple chemical control, a mechanism analogous to that occurring in classic lignification. |