دانلود رایگان مقاله انگلیسی فعالیت آنتی باکتریال باکتروسین ها: کاربرد آن در غذاها و داروها به همراه ترجمه فارسی
عنوان فارسی مقاله: | فعالیت آنتی باکتریال باکتروسین ها: کاربرد آن در غذاها و داروها |
عنوان انگلیسی مقاله: | Antibacterial activities of bacteriocins: application in foods and pharmaceuticals |
رشته های مرتبط: | صنایع غذایی، داروسازی، پزشکی، زیست شناسی، علوم سلولی و مولکولی، میکروبیولوژی، بیوشیمی، باکتری شناسی پزشکی، فارماکولوژی، داروسازی بالینی، علوم مواد غذایی |
فرمت مقالات رایگان | مقالات انگلیسی و ترجمه های فارسی رایگان با فرمت PDF میباشند |
کیفیت ترجمه | کیفیت ترجمه این مقاله پایین میباشد |
توضیحات | ترجمه این مقاله به صورت خلاصه انجام شده است. |
نشریه | Frontiersin |
کد محصول | f250 |
مقاله انگلیسی رایگان |
دانلود رایگان مقاله انگلیسی |
ترجمه فارسی رایگان |
دانلود رایگان ترجمه مقاله |
جستجوی ترجمه مقالات | جستجوی ترجمه مقالات |
بخشی از ترجمه فارسی مقاله: چکیده |
بخشی از مقاله انگلیسی: Bacteriocins are a kind of ribosomal synthesized antimicrobial peptides produced by bacteria, which can kill or inhibit bacterial strains closely-related or non-related to produced bacteria, but will not harm the bacteria themselves by specific immunity proteins. Bacteriocins become one of the weapons against microorganisms due to the specific characteristics of large diversity of structure and function, natural resource, and being stable to heat. Many recent studies have purified and identified bacteriocins for application in food technology, which aims to extend food preservation time, treat pathogen disease and cancer therapy, and maintain human health. Therefore, bacteriocins may become a potential drug candidate for replacing antibiotics in order to treat multiple drugs resistance pathogens in the future. This review article summarizes different types of bacteriocins from bacteria. The latter half of this review focuses on the potential applications in food science and pharmaceutical industry. Keywords: bacteriocin, protein, natural product, food, cancer treatment INTRODUCTION There are many antibacterial substances produced by animals, plants, insects, and bacteria, such as hydrogen peroxide, fatty acids, organic acids, ethanol, antibiotics, and bacteriocins. Antimicrobial peptides (AMPs) or proteins produced by bacteria are categorized as bacteriocins. Scant nutrients in the environment trigger microbial production of a variety of bacteriocins for competition of space and resources. Bacteriocins are abundant, have large diversity, and the genes encode ribosomally synthesized antimicrobial peptides or proteins, which kill other related (narrow spectrum) or non-related (broad spectrum) microbiotas as one of the inherent defense system weapons of bacteria (Figure 1) (Cotter et al., 2005). More than 99% of bacteria can produce at least one bacteriocin, most of which are not identified (Riley and Wertz, 2002). The killing ability of bacteriocins is considered a successful strategy for maintaining population and reducing the numbers of competitors to obtain more nutrients and living space in environments. Unlike most antibiotics, which are secondary metabolites, bacteriocins are ribosomally synthesized and sensitive to proteases while generally harmless to the human body and surrounding environment. Modern society is more conscious of the importance of food safety, as many of the chemical additives used in food may elicit toxic concern; therefore, it is beneficial to claim natural resources and health benefits of diets. The health benefits of natural foods without chemical additives have become more popular; however, most commercially available preservatives and antibiotics are produced by chemical synthesis, and long-term consumption of such products can affect human health as they reduce the counts of bacteria in the gut. Moreover, the use of antibiotics or residues in food is illegal. Unlike chemical preservatives and antibiotics, “generally recognized as safe” (GRAS) bacteriocins, such as nisin, promise safe use as a food preservative in vegetables, dairy, cheese, meats, and other food products, as they inhibit microorganisms contamination during the production process (Deegan et al., 2006; Settanni and Corsetti, 2008). This review focuses on the classification of bacteriocins from Gram-negative and Gram-positive bacteria. The application of bacteriocin-producing bacteria and bacteriocins from natural resources for human life is also elucidated upon in the report. |