دانلود رایگان ترجمه مقاله داستان سونامی

logo-4

دانلود رایگان مقاله انگلیسی داستان سونامی به همراه ترجمه فارسی

 

عنوان فارسی مقاله: داستان سونامی
عنوان انگلیسی مقاله: The Tsunami Story
رشته های مرتبط: زمین شناسی، ژدوفیزیک، زلزله شناسی
 فرمت مقالات رایگان مقالات انگلیسی و ترجمه های فارسی رایگان با فرمت PDF میباشند
 کیفیت ترجمه کیفیت ترجمه این مقاله متوسط میباشد 
کد محصول F7

 مقاله انگلیسی رایگان

دانلود رایگان مقاله انگلیسی

ترجمه فارسی رایگان 

دانلود رایگان ترجمه مقاله
جستجوی ترجمه مقالات جستجوی ترجمه مقالات زمین شناسی

 

بخشی از ترجمه فارسی:

سونامی مجموعه ای از موجهای بسیار بزرگ اقیانوسی است که باعث آشوبهای بزرگ و ناگهانی در ساحل دریا می شود. اگر این آشوبها محدود به خط ساحلی باشد سونامی محلی رخ داده است که می تواند اجتماعات ساحلی را در چند دقیقه ویران کند. یک آشوب بسیار بزرگ می تواند باعث ویرانی محلی و سرایت کردن سونامی به هزاران مایل آن طرف تر شود. لغت سونامی یک لغت ژاپنی است که از دو بخش تشکیل شده است: tsu به معنی « بندرگاه » و name به معنی « موج». سونامی در بین بلایای طبیعی در مرتبه بالایی قرار دارد. از این رو تنها در سال ۱۸۵۰ سونامی باعث از دست رفتن جان ۴۲۰۰۰۰ نفر و بیلیونها دلار خسارت به ساختمانها و سکونتگاههای محلی شد. بیشتر این خسارتها به علت سونامی محلی به وجود می آید که هر سال یکبار در یک جایی از جهان رخ می دهد. مثلاً در ۲۶ دسامبر سال ۲۰۰۶ سونامی حدود ۱۳۰۰۰۰ نفر را در محدوده زمین لرزه و حدود ۵۸۰۰۰ نفر را در محدوده ساحلی دریا کشت. پیش بینی کردن زمان و مکان سونامی بعدی در حال حاضر غیر ممکن است. سونامی یکمرتبه به وجود می آید. اما ممکن است پیش بینی زمان فرا رسیدن و مقدار خسارت آن توسط تکنولوژی مدل سازی و اندازه گیری میسر باشد.
رخداد
سونامی بیشتر به وسیله زمین لرزه در دریا و نواحی ساحلی به وجود می آید. سونامی اصلی با زمین لرزه های شدید (بیش از ۷ درجه در مقیاس ریشتر) در نقاط کم عمق (کمتر از ۳۰ کیلومتر در عمق زمین) همراه با حرکت صفحات اقیانوسی و قاره ای ایجاد می شود. آنها بیشتر اوقات در اقیانوسها رخ می دهند، جایی که انبوه صفحات اقیانوسی به زیر صفحات قاره ای سبکتر می لغزند. وقتی این صفحات می شکنند باعث حرکت عمودی از کف دریا می شوند که انرژی شدید و سریعی را از سطح زمین به اقیانوس وارد می کند (به انیمیشن شکل ۱ نگاه کنید). وقتی در اندونزی در سال ۲۰۰۴ یک زمین لرزه بسیار قدرتمند (به بزرگی ۳/۹ ریشتر) در نواحی ساحلی اتفاق افتاد، حرکت بستر دریا سونامی ای به وسعت ۳۰ متر (feet 100) در طول خط ساحلی ایجاد کرد که جان ۲۴۰۰۰۰ نفر را گرفت. سپس در مدت ۲ ساعت به مرزهای داخلی هم گسترش یافت و جان ۵۸۰۰۰۰ نفر را در تایلند، سریلانکا و هند گرفت.
همچنین وقتی زمین لرزه های زیر آب با زمین لرزه های کوچکتر همراه شوند تبدیل به سونامیهای ویرانگر می شوند. سونامی ای که احتمالاً مربوط به سواحل شمال غربی گینه نو پاپوا در ۱۷ جولای سال ۱۹۹۸ بوده با زمین لرزه ای به اندازه ۷ ریشتر به وجود آمده که ظاهراً از زمین لرزه بزرگی در زیر آب شروع شده است. سه موج به ارتفاع بیش از ۷ متر حدود ۱۰ کیلومتر از خط ساحلی را در مدت ۱۰ دقیقه درنوردید. سه روستای ساحلی به کلی ویران شدند و با این حمله مهلک چیزی جز ماسه باقی نماند و ۲۲۰۰ نفر کشته شدند. از جمله اختلالات دیگری که با مقیاس بزرگ در سطح دریا رخ می دهد و باعث سونامی می شود انفجار آتشفشانها و برخورد شهاب سنگها است. فوران آتشفشان Krakatoa هند شرقی در ۲۷ آگوست ۱۸۸۳ سونامی ۳۰ متری ای را ایجاد کرد که جان بیش از ۳۶۰۰۰ نفر را گرفت. در سال ۱۹۹۷ دانشمندان شواهدی را به دست آوردند که در دو میلیون سال قبل یک شهاب سنگ آسمانی به قطر ۴ کیلومتر در منطقه ساحلی کشور شیلی فرود آمده و باعث یک سونامی عظیم شده که بخشهایی از آمریکای جنوبی و قطب جنوب را در نوردیده است.
انتشار امواج
چون حرکات زمین با زمین لرزه های شدید که هزار کیلومتر مربع در دریا هستند ترکیب می شوند هر حرکت عمودی در بستر دریا، سطح دریا را دگرگون می کند. در نتیجه سونامی موجهای پرقدرتی را ایجاد می کند که نظیر حرکات سطح زمین هستند ( تقریباً ۱۰۰ کیلومتر ) و موجهای بلندی را با جابه جایی عمودی صفحات ایجاد می کنند ( تقریباً ۱ متر ). جهت موجها هم بسته به هندسه خط ساحلی است. چون هر زمین لرزه منحصر به فرد است، هر سونامی هم طول موجهای منحصر به فردی دارد، موجهای بسیار بلند و هدایت شده ( شکل ۲ انتشار سونامی سوماترا را در ۲۴ دسامبر سال ۲۰۰۴ نشان می دهد ). از لحاظ اعلام خطر سونامی، پیش بینی واقعی زمان سونامی بسیار مشکل است.

شکل ۲
سیستمهای هشدار دهنده
بعد از سال ۱۹۴۶ سیستم هشدار دهنده سونامی با کنترل فعالیت زمین لرزه و عبور موجهای سونامی در جزر و مد نماها خطر وقوع یک سونامی را در نواحی آرام اعلام کرد. هرچند نه زلزله سنجها و نه جزر و مد نماهای ساحلی پیش بینی درستی از مکان دقیق وقوع سونامی نمی دهد لیکن کنترل زمین لرزه ها بهتر وجود یک سونامی بالقوه را نشان می دهند. اما اندازه و محل زمین لرزه ها هیچ اطلاعات مستقیمی درباره خود سونامی نمی دهند. جزر و مد نماهای بندرگاهها به صورت مستقیم سونامی را اندازه گیری می کنند. اما این سونامی به طور معنی داری با عمق سنجی محل و شکل بندرگاهها تغییر می کند که این امر استفاده از آنها را در پیش بینی حملات سونامی در محلهای دیگر محدود می کند. چون این اطلاعات تا اندازه ای محدود می باشد، در سال ۱۹۴۶ از هر ۲۰ هشدار وقوع سونامی ۱۵ تای آنها هشدار های اشتباه بودند چون سونامی ای که وقوع می یافت خسارات ناچیزی به همراه داشت.
پیش بینی ضربات
به تازگی موج یابهای سونامی در عمق اقیانوسها اطلاعات لازم را برای پیش بینی زمان واقعی سونامی فراهم کرده اند ( شکل ۳ ). در ۱۷ نوامبر سال ۲۰۰۳ در آلاسکا جامع ترین آزمونها برای روش شناسی پیش بینی سونامی صورت گرفت. زمین لرزه ای با طول موج ۸/۷ در فلات قاره ای نزدیک جزایرRat آلاسکا باعث وقوع سونامی ای شد که توسط سه سونامتر (sunameter ) در امتداد گودال Aleutian تعیین محل شده بود – اولین ردیابی سونامی که به تازگی زمان واقعی وقوع سونامی را پیش بینی کرد سیستم سونامتر بود. اطلاعات زمان واقعی (real time) به اضافه مدل database ( شکل ۴ ) برای ایجاد مدل زمان واقعی پیش بینی سونامی استفاده شدند. اولین بار مدل پیش بینی سونامی در طول انتشار سونامی و قبل از اینکه موجها به خط ساحلی برسند فراهم شد. نخستین پیش بینی ساحلی که فوراً بعد از پارامترهای اولیه زمین لرزه بدست آمد ( محل و اندازه یک هزارم ثانیه = ۵/۷ ) از سواحل غربی آلاسکا TWC ( حدود ۱۵ تا ۲۰ دقیقه پس از زمین لرزه ) بود. برآوردهای این مدل توالی زمانی سونامی را در ردیابهای سونامتر پیش بینی کرد. وقتی سونامتر اولین موج را ثبت کرد حدود ۸۰ دقیقه پس از سونامی، پیش بینی های مدل با اطلاعاتی که از عمق اقیانوس به دست آمده بود و پیش بینی های جدیدتر برابر بودند .

بخشی از مقاله انگلیسی:

Tsunami is a set of ocean waves caused by any large, abrupt disturbance of the sea-surface. If the disturbance is close to the coastline, local tsunamis can demolish coastal communities within minutes. A very large disturbance can cause local devastation AND export tsunami destruction thousands of miles away. The word tsunami is a Japanese word, represented by two characters: tsu, meaning, “harbor”, and nami meaning, “wave”. Tsunamis rank high on the scale of natural disasters. Since 1850 alone, tsunamis have been responsible for the loss of over 420,000 lives and billions of dollars of damage to coastal structures and habitats. Most of these casualties were caused by local tsunamis that occur about once per year somewhere in the world. For example, the December 26, 2004, tsunami killed about 130,000 people close to the earthquake and about 58,000 people on distant shores. Predicting when and where the next tsunami will strike is currently impossible. Once the tsunami is generated, forecasting tsunami arrival and impact is possible through modeling and measurement technologies. Generation. Tsunamis are most commonly generated by earthquakes in marine and coastal regions. Major tsunamis are produced by large (greater than 7 on the Richter scale), shallow focus (< 30km depth in the earth) earthquakes associated with the movement of oceanic and continental plates. They frequently occur in the Pacific, where dense oceanic plates slide under the lighter continental plates. When these plates fracture they provide a vertical movement of the seafloor that allows a quick and efficient transfer of energy from the solid earth to the ocean (try the animation in Figure 1). When a powerful earthquake (magnitude 9.3) struck the coastal region of Indonesia in 2004, the movement of the seafloor produced a tsunami in excess of 30 meters (100 feet) along the adjacent coastline killing more than 240,000 people. From this source the tsunami radiated outward and within 2 hours had claimed 58,000 lives in Thailand, Sri Lanka, and India. Underwater landslides associated with smaller earthquakes are also capable of generating destructive tsunamis. The tsunami that devastated the northwestern coast of Papua New Guinea on July 17, 1998, was generated by an earthquake that registered 7.0 on the Richter scale that apparently triggered a large underwater landslide. Three waves measuring more than 7 meter high struck a 10-kilometer stretch of coastline within ten minutes of the earthquake/slump. Three coastal villages were swept completely clean by the deadly attack leaving nothing but sand and 2,200 people dead. Other large-scale disturbances of the sea -surface that can generate tsunamis are explosive volcanoes and asteroid impacts. The eruption of the volcano Krakatoa in the East Indies on Aug. 27, 1883 produced a 30-meter tsunami that killed over 36,000 people. In 1997, scientists discovered evidence of a 4km diameter asteroid that landed offshore of Chile approximately 2 million years ago that produced a huge tsunami that swept over portions of South America and Antarctica. Figure 2. Click to see the propagation of the December 24, 2004 Sumatra tsunami. Wave Propagation. Because earth movements associated with large earthquakes are thousand of square kilometers in area, any vertical movement of the seafloor immediately changes the sea-surface. The resulting tsunami propagates as a set of waves whose energy is concentrated at wavelengths corresponding to the earth movements (~100 km), at wave heights determined by vertical displacement (~1m), and at wave directions determined by the adjacent coastline geometry. Because each earthquake is unique, every tsunami has unique wavelengths, wave heights, and directionality (Figure 2 shows the propagation of the December 24, 2004 Sumatra tsunami.) From a tsunami warning perspective, this makes the problem of forecasting tsunamis in real time daunting. Warning Systems. Since 1946, the tsunami warning system has provided warnings of potential tsunami danger in the pacific basin by monitoring earthquake activity and the passage of tsunami waves at tide gauges. However, neither seismometers nor coastal tide gauges provide data that allow accurate prediction of the impact of a tsunami at a particular coastal location. Monitoring earthquakes gives a good estimate of the potential for tsunami generation, based on earthquake size and location, but gives no direct information about the tsunami itself. Tide gauges in harbors provide direct measurements of the tsunami, but the tsunami is significantly altered by local bathymetry and harbor shapes, which severely limits their use in forecasting tsunami impact at other locations. Partly because of these data limitations, 15 of 20 tsunami warnings issued since 1946 were considered false alarms because the tsunami that arrived was too weak to cause damage.

  

ارسال دیدگاه

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *