دانلود رایگان ترجمه مقاله مقایسه شبكه عصبی رگرسیون عمومی و مدل سری زمانی Box-Jenkins – الزویر ۲۰۱۴

دانلود رایگان مقاله انگلیسی پیش بینی هزینه نگه داری تجهیزات ساخت و ساز: مقایسه بین شبکه عصبی رگرسیون عمومی و مدل های سری های زمانی باکس-جنکینز به همراه ترجمه فارسی

 

عنوان فارسی مقاله پیش بینی هزینه نگه داری تجهیزات ساخت و ساز: مقایسه بین شبکه عصبی رگرسیون عمومی و مدل های سری های زمانی باکس-جنکینز
عنوان انگلیسی مقاله Predicting the maintenance cost of construction equipment: Comparison between general regression neural network and Box–Jenkins time series models
رشته های مرتبط معماری، مدیریت پروژه و ساخت
کلمات کلیدی تجهیزات ساخت و ساز، مدیریت نگه داری، تحلیل سری های زمانی، شبکه عصبی رگرسیون عمومی
فرمت مقالات رایگان

مقالات انگلیسی و ترجمه های فارسی رایگان با فرمت PDF آماده دانلود رایگان میباشند

همچنین ترجمه مقاله با فرمت ورد نیز قابل خریداری و دانلود میباشد

کیفیت ترجمه کیفیت ترجمه این مقاله متوسط میباشد 
توضیحات ترجمه این مقاله به صورت خلاصه انجام شده است.
نشریه الزویر – Elsevier
مجله اتوماسیون در ساخت و ساز – Automation in Construction
سال انتشار ۲۰۱۴
کد محصول F583

مقاله انگلیسی رایگان (PDF)

دانلود رایگان مقاله انگلیسی

ترجمه فارسی رایگان (PDF)

دانلود رایگان ترجمه مقاله

خرید ترجمه با فرمت ورد

خرید ترجمه مقاله با فرمت ورد
جستجوی ترجمه مقالات جستجوی ترجمه مقالات معماری

  

فهرست مقاله:

چکیده

۱- مقدمه

۲- مرور منابع

۳- تحلیل سری های زمانی

۴- شبکه عصبی رگرسیون عمومی

۴-۱ مرور اجمالی

۵- بیان مسئله

۶- مدل سازی و تحلیل هزینه های نگه داری تجهیزات ساخت

۶-۱ داده ها

۶-۲ تست ایستایی

۶-۳ مدل سازی سری های زمانی تک متغیره

۶-۴ مدل سازی سری های زمانی چند متغیره بامصرف سوخت

۶-۵ اعتبار سنجی مدل

۷- مقایسه ARMA، VAR و GRNN

۸- اثر مصرف سوخت بر روی مدل سازی سری های زمانی

۹- بحث در خصوص پیش بینی هزینه های نگه داری تجهیزات ساخت و ساز

۱۰- نتیجه گیری

 

بخشی از ترجمه فارسی مقاله:

۱- مقدمه
مدیریت هزینه نگه داری تجهیزات ساخت و ساز یک وظیفه مهم و خطیر برای پیمانکاران در صنعت ساخت و ساز به خصوص برای افرادی که در کار های ساخت و ساز سنگین با استفاده زیاد از تجهیزات می باشند محسوب می شود. تجهیزات ساخت و ساز، کارکرد های مختلفی نظیر زمین روبی، بالابردن و لجستیک دارند و در معرض طیف وسیعی از کار های نگه داری می باشند که شامل نگه داری پیشگیرانه، نگه داری پیش بینانه و اجرای تعمیر در زمان کار می باشند. از این روی وارستر(۲) خاطر نشان کرده است که هزینه بخش تعمیر و کار بین ۱۵ و ۲۰ درصد کل بودجه هزینه کل بوده و براورد آن سخت است و از این روی تصمیمات مربط به هزینه های تعمیر بر طول عمر یک ماشین و دستکاه اثر دارد. هزینه های نگه داری به طور معنی داری بسته به ویژگی های تجهیزات، راهبرد های نگه داری، پیمانکاران، شرایط کار و مهارت های اپراتور ها متغیر بوده و موجب شده اند تا مالکیت تجهیزات و هزینه های عملیاتی برای تصمیمات مدیریتی سخت باشد. یکی از وظایف خطیر مدیریت، پیش بینی هزینه های نکه داری تجهیزات در سطوح مختلف سازمان مالک تجهیزات است. پیش بینی دقیق هزینه های نگه داری تجهیزات در افق برنامه ریزی موجب تسهیل برنامه ریزی بودجه برای عملیات تجهیزات، تخصیص منابع نگه داری ، تعمیر و تجهیزات و تصمیمات جایگزینی می شود. مدل سازی هزینه های نگه داری تجهیزات نشان دهنده رفتار پویای هزینه های نگه داری تجهیزات می باشند که در این رابطه تصمیمات مدیریتی را می توان در خصوص تغییرات هزینه نگه داری اتخاذ کرد.
از دیرباز، مالکان تجهیزات در صنعت ساخت و ساز( پیمانکاران، سازمان دولتی و شرکت های اجاره تجهیزات)، هزینه های نگه داری تجهیزات را بر اساس تجربه قبلی پیش بینی می کنند.ضرایب تعدیل را می توان در مقادیر معیار برای توجیه اثر از عوامل مختلف مربوط به تجهیزات (سن، شرایط سلامت، تاریخ تعمیر و نگهداری، و غیره)، محیط زیست (حجم کار، شرایط کار، و غیره)، و سازمان (تجهیزات سیاست مدیریت، ماهیت کسب و کار، و غیره) استفاده کرد. با این حال پیش بینی قضاوت هزینه های نکه داری اینده بر اساس دانش شخصی، تجربه و شهود به دلیل ماهیت تصادفی خرابی تجهیزات غیر قابل اطمینان است. بدون اجماع در خصوص روش شناسی میان متخصصان صنعتی، مدل سازی آماری هزینه نگه داری تجهیزات ساخت و ساز می تواند یگ رویکرد کمی را برای پیش بینی هزینه های نگه داری در افق برنامه ریزی ارایه کند.
تحقیقات قبلی در این زمینه که از رگرسیون خطی یا غیر خطی با حداقل مربعات معمولی استفاده کرده اند، توسط مانکیس و دراکاتوس(۳)، ادواردز (۴-۶)، ادواردز و هولت(۷) و گیلیسپی و هید(۸) انجام شده اند. به غیر از مدل های رگرسیون سنتی، استفاده از رویکرد سری زمانی در این زمینه و یا در رشته های مربوطه اطلاعاتی را در خصوص دست یابی به یک مدل خوب از هزینه نگه داری تجهیزات ارایه می کند. مور(۹) به این نتیجه رسید که سری های زمانی هزینه های نگه داری دارای خود همبستگی ذاتی در میان سری های هزینه مشاهده شده است. ادواردز و همکاران(۴) از میانگین متحرک مرکزی برای تحلیل سری های زمانی هزینه نگه داری تجهیزات ساخت و ساز استفاده کرده و روند تغییرات آن را تحلیل کردند. زایو و همکاران(۱۰) یک مدل میانگین متحرک اتورگرسیو را ایجاد کرده اند که موسوم به مدل باکس- جنکینز برای مدل سزای خرابی تجهیزات بر اساس داده های تبدیل شده است. همه این تلاش ها برای توصیف و پیش بینی رفتار عملکرد تجهیزات و هزینه نگه داری با استفاده از مدل های پیش بینی سری های زمانی و نتایج درجات مختلف صحت انجام شده اند.
اگرچه تحلیل سری های زمانی با استفاده از مدل های باکس جنگینز انجام شده اندف شبکه های عصبی مصنوعی برای مدل سازی سری های زمانی و تحلیل به دلیل کاربرد آن برای شناسایی روابط غیر خطی میان داده های سری زمانی استفاده شده اند. استفاده از شبکه عصبی مصنوعی در مدل سازی و در پیش بینی هزینه نگه داری تجهیزات ساخت و ساز رایج شده است. ادواردز وهمکاران از پرسپترون چند لایه ای برای پیش بینی ارز شهای اینده هزینه نگه داری تجهیزات ساخت و ساز استفاده کرده اند. هانگ و پای ۱۳ اقدام به مدل سازی و پیش بینی اطمینان پذیری موتور با استفاده از اشکال مختلف مدل ها کردند که شامل شبکه های عصبی رگرسیون، ماشین بردار پشتیبان و ARMA بوده و سپس عملکرد آنها را در پیش بینی متریک های پایایی موتور مقایسه کردند.
بر طبق گفته مور(۹)، که نشان داد سری های زمانی هزینه نگه داری تجهیزات دارای خود همبستگی بالایی در میان داده های مشاهده شده است، هدف این مطالعه توسعه و مقایسه مدل های سری های زمانی با استفاده از مدل های باکس –حنکینز و GRNN می باشد که یک مدل پیش بینی مبتنی بر یادگیری ماشینی است. این مطالعه یک مدل سازی تک متغیره را از سری های زمانی هزینه نگه داری با استفاده ازARMA و GRNN انجام داده است. اثر مصرف سوخت ر روی مدل سازی هزینه نگه داری هر دو اتورگرسیون برداری و GRNN برای ارزیابی عملکرد مدل های پیش بینی پس از استفاده از متغیر توضیحی استفاده کرده اند. در نهایت، عملکرد مدل های سری های زمانی سنتی و مدل های GRNN مقایسه شده و مزایا و معایب آن ها بحث شد.

بخشی از مقاله انگلیسی:

۱٫ Introduction

Managing the maintenance cost of construction equipment is an important task for contractors in the construction industry, especially for those engaged in heavy construction work with extensive equipment use. Construction equipment provides the functions of earthmoving, lifting, and logistic supplies and is subject to various types of maintenance work, which include preventive maintenance, predictive maintenance, and running repairs, to stay in normal working conditions. Peurifoy etc. emphasized that “the cost of repairs is normally the largest single component of machine cost, the repair cost constitutes 37% of machine cost over its service life” [۱], and Vorster [2] pointed out that costs of repair part and labor make up between 15% and 20% percent of the total equipment budget, and is the most difficult to estimate, decisions regarding repair costs affect the hourly rate as well as the economic life of a machine. Maintenance costs can significantly change depending on equipment characteristics, the maintenance strategies of contractors, working conditions, and operator skills, which bring difficulty to estimating equipment ownership and operating cost for management decisions. One crucial yet challenging management activity is predicting the maintenance costs of equipment at various levels of the equipment-owning organization. An accurate prediction of equipment maintenance costs in the planning horizon facilitates budget planning for equipment operations, maintenance resource allocations, equipment repair, overhaul, and replacement decisions. The modeling of equipment maintenance costs can also reveal the dynamic behavior of equipment maintenance costs as well as their factors, on which management decisions can be made to interfere proactively with and predict maintenance cost variations. Traditionally, equipment owners in the construction industry (i.e., contractors, government organization, and equipment rental companies) predict the maintenance costs of various construction equipment based primarily on past experience, for example, the maintenance cost of a piece of equipment can be estimated from the historical data of similar equipment under similar conditions. Adjustment factors can be applied to the benchmark values to account for the impact from various factors related to equipment (age, heath conditions, maintenance history, etc.), environment (workloads, working conditions, etc.), and organization (equipment management policy, business nature, etc.). However, judgmental forecasting of future maintenance costs based on experience, intuition and personal knowledge is unreliable due to the inherent random nature of equipment failures. With no consensus on the methodology among industrial practitioners, the statistical modeling of the maintenance cost of construction equipment provides a better quantitative approach to predict maintenance costs in the planning horizon. Previous research in this area, which has commonly employed linear or nonlinear regression by ordinary least squares, has been conducted by Manatakis and Drakatos [3], Edwards et al. [4–۶], Edwards and Holt [7], and Gillespie and Hyde [8], among others. Apart from these conventional regression models, the use of the time series approach in this area or in related fields gives further insights into obtaining a good model of the maintenance costs of construction equipment. Moore [9] found that the maintenance cost time series has an inherent autocorrelation among observed cost series. Edwards et al. [4] utilized the centered moving average to analyze the time series of the maintenance cost of construction equipment and isolated its trend of changes. Zhao et al. [10] established an autoregressive moving average (ARMA) model, also known as the Box–Jenkins method [11], to model equipment failures based on transformed data. Durango-Cohen [12] adopted the ARMA with exogenous input model (ARMAX) to model the performance behavior of transportation facilities with the application of the Kalman filter. All these attempts have been made to describe and predict the behavior of equipment performance and maintenance cost by using time series forecasting models and results of various degrees of accuracy were obtained. Although time series analysis has been traditionally conducted using Box–Jenkins models, artificial neural networks (ANN) have also been used for time series modeling and analysis because of its capability to identify the complex underlying nonlinear relationships among time series data. The use of ANN in modeling and in predicting the maintenance cost of construction equipment has been presented in a number of related research work. Edwards et al. [5] used multilayer perceptron (MLP) to predict future values of the maintenance cost of construction plants and found that MLP neural networks have better performance than that of other modeling algorithms such as multiple regression. Hong and Pai [13] modeled and predicted engine reliability by using various forms of models, which include general regression neural networks (GRNNs), support vector machine, and ARMA, and compared their performance in predicting engine reliability metrics. Following Moore [9], who found that the time series of equipment maintenance cost has autocorrelations among observed data, this study aims to develop and compare time series models for a cost analysis of construction equipment maintenance by using both traditional Box–Jenkins models and GRNN, a machine learning-based forecasting model. The study first presents a univariate modeling of the time series of maintenance cost by using ARMA and GRNN to predict the maintenance cost of construction equipment based on its historical observations. The impact of fuel consumption on the maintenance cost modeling of both traditional vector autoregression (VAR) and GRNN is then investigated to evaluate the performance of forecasting models after the incorporation of this parallel explanatory variable. Finally, the performance of traditional time series models and that of GRNN models is compared, and their advantages and disadvantages are then discussed.