دانلود رایگان مقاله انگلیسی نانوکامپوزیت های پلیمری برای تکمیل چند عاملی منسوجات: یک مقاله مروری به همراه ترجمه فارسی
عنوان فارسی مقاله: | نانو کامپوزیت های پلیمری برای تکمیل چند عاملی منسوجات: یک مقاله مروری |
عنوان انگلیسی مقاله: | Polymer Nanocomposites for Multifunctional Finishing of Textiles – a Review |
رشته های مرتبط: | مهندسی نساجی، مهندسی پلیمر، مهندسی مواد، مهندسی مواد مرکب یا کامپوزیت، نانو مواد، ساختارهای نانو لیفی، شیمی نساجی و علوم الیاف، فناوری نساجی و نانو فناوری پلیمر |
فرمت مقالات رایگان | مقالات انگلیسی و ترجمه های فارسی رایگان با فرمت PDF میباشند |
کیفیت ترجمه | کیفیت ترجمه این مقاله خوب میباشد |
توضیحات | ترجمه این مقاله به صورت خلاصه انجام شده است. |
نشریه | سیج – Sage |
کد محصول | f306 |
مقاله انگلیسی رایگان (PDF) |
دانلود رایگان مقاله انگلیسی |
ترجمه فارسی رایگان (PDF) |
دانلود رایگان ترجمه مقاله |
خرید ترجمه با فرمت ورد |
خرید ترجمه مقاله با فرمت ورد |
جستجوی ترجمه مقالات | جستجوی ترجمه مقالات مهندسی نساجی |
بخشی از ترجمه فارسی مقاله: افزایش تقاضا برای مواد پارچه ای چند عاملی مستلزم یک رویکرد چند رشته ای قوی و ترکیب رشته های علمی مختلف است(1-3). اولین کاربرد تجاری نانوپرداخت را می توان در منسوچات در شکل نانوذرات از طریق فرایند پرداخت مشاهده کرد. با این حال، این پرداخت ها مقاومتی در برابر شست و شو به دلیل تثبیت ضعیف نانوذرات فوق در سطح پارچه نشان نمی دهند. اطمینان از پیوند و اتصال نانوذرات در سطح پارچه نه تنها موجب افزایش دوام و مقاومت می شود، بلکه خصوصیات مناسبی از نظر زیست محیطی برای پیش گیری از آزاد شدن نانوذرات با پیوند ضعیف به محیط نشان می دهند. با استفاده از ماتریس های پلیمر عاملی آب دوست و آب گریز به عنوان محیط انتشار برای نانوذرات منجر به نانوکامپوزیت های پلیمری با خواص پیوندی بالا و قابلیت خیس شدگی مطلوب با خواص عاملی نظیر مقاومت فرابنفش، ضد میکروبی و ضد حریق بودن که از خصوصیات منحصر به فرد نانوذرات است می شود. در این مقاله، بر کاربرد PN در منسوجات برای دست یابی به قابلیت خیس شدگی بالا، حفاظت در برابر اشعه فرابنفش، خواص رسانایی و ضد میکروبی تاکید می شود. |
بخشی از مقاله انگلیسی: The increasing demand for multifunctional fabric materials requires a strong multidisciplinary approach as well as the merging of traditional scientific disciplines [1–3]. The first commercial application of nanofinishes is found in textiles in the form of nanoparticles through finishing processes. However, these finishes do not withstand subsequent washing due to poor fixing of these nanoparticles on the textile surface. Assuring improved bonding of the nanoparticles with textile surfaces not only increases the durability property, but also provides an ecofriendly consideration of preventing release of loosely-bound nanoparticles into the environment. Using hydrophobic/hydrophilic functional polymer matrices as the dispersion medium for the nanoparticles will result in polymer nanocomposites (PN) with improved bonding properties and impart desired wettability with different functional properties like ultraviolet (UV) resistance, antimicrobial and flame retardancy which are unique characteristics of different nanoparticles. In this review article, we focus mainly on the applications of PN to textiles for achieving desired wettability, UV protection, antimicrobial and conductivity properties. Nature has already developed PN with an elegant approach that combines chemistry and physics to create super-repellent hydrophobic surfaces. Lotus leaves are unusually water-repellent and keep themselves spotless due to micro protrusions and hydrophobic wax covering the surface [4, 5]. A surface with receding and advanced water contact angle above 150° is considered to be ultrahydrophobic. In fact, surfaces with water contact angle more than 150° can be developed by introducing proper roughness on a material’s boundary having low surface energy [6–8]. Classical work of Wenzel [9] and Cassie and Baxter [10] established that roughness as well as surface energy are the factors that determine wettability of a surface. It was proved that increasing the surface roughness enhances both hydrophilicity of hydrophilic surfaces and hydrophobicity of hydrophobic surfaces. Therefore, addition of nanoparticles to the hydrophobic/hydrophilic functional polymers will improve the properties of the polymer with additional incorporation of the functional properties of nanoparticles. Gao and McCarthy emphasized that contact angle hysteresis (the difference between the advancing and receding contact angles), and not high contact angle, controls water-repellency of a surface [11]. Moisture management/hydrophilic finishes on textiles are very important to impart absorbency, which is one of the main considerations in the applications of sportswear which are generally made with functional jersey with cellulosic fiber on the outside. The mode of action consists of the finest fibrilled microfibers transporting moisture rapidly from the skin through the capillary interstices to the absorbent outer layer. The properties imparted to textiles having PN include UV protection, antibacterial, flame retardancy, antistatic and conductivity. The inorganic UV blockers are preferable to organic blockers as they are non-toxic and chemically stable under exposure to both high temperature and UV. Usually certain semiconductor oxides such as TiO2, SiO2, ZnO and Al2O3 are used as UV blockers [12, 13]. Rayleigh’s scattering is dependent upon the wavelength where the scattering is inversely proportional to the wavelength to the fourth power. This theory predicts that in order to scatter UV radiation between 200 to 400 nm, the optimum particle size will be between 20 to 40 nm. For imparting antibacterial properties, nanosilver, TiO2 and ZnO are used [14–17]. Nanosilver is very reactive to protein when contacting with bacteria and fungus; it will adversely affect the cellular metabolism and inhibit the cell growth [18]. Fabrics treated with nano TiO2 can provide effective protection against bacteria and discoloration of stain due to the photo catalysis effect of this agent [19, 20]. Nano ZnO provides effective photo catalytic properties once it is illuminated by light and it is employed to impart antibacterial properties to textiles [21–23]. Some inert textile surfaces need to be pretreated making certain functional groups available for bonding with PN finishing. Some of the treatments, such as hydroxylamine treatment and plasma discharges, are used for surface pretreatment of fabrics [24, 25]. Plasmatic treatments in several textile substrates like cotton, linen, wool and synthetic fibers were studied proving that this type of treatment increases whiteness degree, removal of waxes and sizing agents, absorption and fixation of dyes and finishing agents, improves durability of functional effects and is able to provide certain functional groups available to bind PN [26–30]. Alay et al. [31] studied the effect of plasma treatment of cotton fabrics on fluorocarbon-based water-repellent finishing. It was found that the hydrophobicity of the fabric is significantly improved after plasma pretreatment and the hydrophobic character is maintained even after five washings with contact angle higher than 120° (Figures 1 and 2). The PN Finishing Concept in Textile Applications What are PN and what makes them interesting in textile applications? The answer to these questions resides in the fundamental length scales dominating the morphology and properties of these materials. PN are an emerging class of mineral-filled polymer that contain relatively small amounts (usually < 10%) of nanometer-sized inorganic particles. They represent a radical alternative to the conventional polymer composites [32–36]. Three major characteristics define and form the basis of PN performance: nanoscopically-confined matrix of polymer; nanoscale inorganic constituents; and nanoscale arrangements of these constituents. The drive for current research is to optimize and enable full exploitation of the potential of their unique characteristics in the textile industry |