دانلود رایگان مقاله انگلیسی یک سیستم پیزو فعال حلقه بسته MEMS برای تاخیر فعال انتقال به همراه ترجمه فارسی
عنوان فارسی مقاله | یک سیستم پیزو فعال حلقه بسته MEMS برای تاخیر فعال انتقال |
عنوان انگلیسی مقاله | A Piezo-Actuated Closed Loop Mems System For Active Delay Of Transition |
رشته های مرتبط | مهندسی برق و مکانیک، مکاترونیک، مدارهای مجتمع الکترونیک، افزاره های میکرو و نانو الکترونیک، مهندسی الکترونیک و ساخت و تولید |
فرمت مقالات رایگان |
مقالات انگلیسی و ترجمه های فارسی رایگان با فرمت PDF آماده دانلود رایگان میباشند همچنین ترجمه مقاله با فرمت ورد نیز قابل خریداری و دانلود میباشد |
کیفیت ترجمه | کیفیت ترجمه این مقاله متوسط میباشد |
نشریه | آی تریپل ای – IEEE |
مجله | کنفرانس بین المللی سنسورهای حالت جامد، فعال کننده و مایکروسیستم ها |
سال انتشار | 2009 |
کد محصول | F690 |
مقاله انگلیسی رایگان (PDF) |
دانلود رایگان مقاله انگلیسی |
ترجمه فارسی رایگان (PDF) |
دانلود رایگان ترجمه مقاله |
خرید ترجمه با فرمت ورد |
خرید ترجمه مقاله با فرمت ورد |
جستجوی ترجمه مقالات | جستجوی ترجمه مقالات |
فهرست مقاله: خلاصه |
بخشی از ترجمه فارسی مقاله: مقدمه تحریک کننده های PPC |
بخشی از مقاله انگلیسی: INTRODUCTION The active delay of transition has been a major topic in aerospace research throughout the last decades. Boundary layer instabilities (TS waves) in 2D airfoil boundary layers can cause a transition from laminar to turbulent flow, which increases the drag significantly. By launching an opposed surface wave into the boundary layer, the amplitude of the TS waves can locally be reduced and hence, the transition from laminar to turbulent flow can be delayed [1]. Current research uses loudspeakers which displace a flexible membrane to create a counter wave in the boundary layer [2,3]. These experiments have been successful but the approach using loudspeakers is limited regarding its miniaturization potential. For creating a traveling surface wave, an array of downstream cascaded actuators is desired. Loudspeakers cannot be cascaded as densely as required, what creates the need for a new, miniaturized actuator concept. Active delay of transition demands a combined sensoractuator system to detect the TS wave pattern and to cancel them by a suitable wave-like movement of the wing surface. The principal setup is shown in Figure 1. The amplitude of the TS-waves is increasing while traveling downstream across the airfoil. An array of hot wire sensors detects the incoming TS waves. Downstream of the first sensor array (reference sensor) an actuator system is placed. This system locally displaces an elastic cover. In order to induce a real traveling surface wave into the boundary layer, several actuators that are cascaded within one TS wavelength (in the performed experiments typically in the range of a few cm) are needed. Downstream of the actuator system, at least one further sensor (error sensor) is necessary. This sensor measures the success of reducing the disturbance amplitudes and feeds back the information to the control. A schematic of the control principle is shown in Figure 2. The control uses a filter based approach (finite impulse response, FIR [4]) to calculate an actuator signal that minimizes the signal amplitude of the error sensor. As the TS-waves occur randomly, the calculated transfer function of the control for driving the actuator has to be continuously adapted. As a first step within this project, an actuator prototype has been developed that consists of only one piezo-polymercomposite (PPC) actuator. The goal is to prove the principal suitability of the PPC technology for active delay of transition. This paper presents the development of this prototype and its evaluation in first wind tunnel experiments. Based on the gained experiences and insights, a system with cascaded actuators, like outlined in Figure 1, will be developed in a next step. PPC-ACTUATOR The requirements on the actuator are defined by the application and the experimental setup. For active control of transition an actuator is needed that fulfills a variety of specifications. The working range depends on the frequency range of the incoming TS waves, which is determined by the flow velocity in the wind tunnel and the pressure distribution across the airfoil. A typical power spectrum for the presented experiments is shown in Figure 3. The instable frequencies (TS waves) are between 200 Hz and 600 Hz, which therefore is the required working range of the actuator. Within this working range it must be possible to displace the actuator very precisely. As the velocity amplitudes of the actuator must be in the range of 10% of the velocity fluctuations in the boundary layer (approximately up to 1m/s), an actuator velocity of 0.1m/s is required. This corresponds to an actuator stroke in the range of 100µm. A small phase gradient within the working range is mandatory. As the actuator has to displace a flexible cover, also the force of the actuator becomes a determining parameter. |