دانلود رایگان ترجمه مقاله کنترل مقاوم و تعمیم یافته حلقه جریان موتور رلوکتانسی سوییچ شده – ASME 2014

دانلود رایگان مقاله انگلیسی کنترل مقاوم بر اساس تنظیم پیش بین تعمیم یافته به حلقه جریان موتور رلوکتانسی سوییچ شده به همراه ترجمه فارسی

 

عنوان فارسی مقاله: کنترل مقاوم بر اساس تنظیم پیش بین تعمیم یافته به حلقه جریان موتور رلوکتانسی سوییچ شده
عنوان انگلیسی مقاله: Robust Control Based on Generalized Predictive Control Applied to Switched Reluctance Motor Current Loop
رشته های مرتبط: مهندسی برق، مهندسی الکترونیک، الکترونیک قدرت و ماشینهای الکتریکی
فرمت مقالات رایگان مقالات انگلیسی و ترجمه های فارسی رایگان با فرمت PDF میباشند
کیفیت ترجمه کیفیت ترجمه این مقاله خوب میباشد 
توضیحات ترجمه صفحات آغازین موجود نیست
نشریه ASME
کد محصول F120

مقاله انگلیسی رایگان

دانلود رایگان مقاله انگلیسی

ترجمه فارسی رایگان 

دانلود رایگان ترجمه مقاله
جستجوی ترجمه مقالات جستجوی ترجمه مقالات برق

 

 

بخشی از ترجمه فارسی:

این مقاله، یک کنترل مقاوم بر اساس کنترل پیش بین تعمیم یافته(GPC) اعمال شده به حلقه کنترل جریان برای یک موتور رلوکتانسی(مقاومت مغناطیسی)SRM ارایه کرده است. کنترلگر پیشنهادی دارای دو درجه آزادی می باشد که در آن رد یابی نقطه تنظیم از حذف اغتشاش بار در مورد نامی جدا می شود. به علاوه، یک طرح فلیتر به منظور دستیابی به رابطه خوب میان مقاومت، حذف اغتشاش بار و میرایی نویز پیشنهاد شده است. نتایج آزمایشی و شبیه سازی واقعی نشان داده شده بیانگر عملکرد کنترل گر می باشند([DOI: 10.1115/1.4026128]).
۱- مقدمه
SRMs(موتور های رلوکتانسی سوییچ شده) یک راه حل مدرن و جایگزین برای تبدیل الکترومغناطیسی با سرعت متغیر می باشند. قابلیت دسترسی به ابزار های سوییچینگ(کلید کننده) با فرکانس بالا و پیشرفت در طراحی ماشین ناشی از سادگی ذاتی SRM، اطمینان پذیری، هزینه پایین، ظرفیت بالا و عملکرد متحمل به خطا موجب شده است تا تبدیل به یک جایگزین مناسب برای محرک های موتور سنتی شود( ۱-۲).
موتور های رلوکتانسی سوییچ شده به طور متعارف یا توسط حلقه هیسترزیس یا کنترل گر های مدولاسیون عرضی پالس حلقه بسته (PWM) کنترل می شود.هر طرح دارای مزیت ها و معایب خاص خود با توجه به تغییرات پارامتری، صحت، مقاومت، و پاسخ دینامیکی طی کل دامنه زمانی می باشد. کنترل گر جریان هیسترزیس به دلیل ارزان بودن، ساده بودن و ساختار سهل الوصل بسیار محبوب است.(۳-۵). با این حال، معایب شناخته شده ای نظیر فرکانس سوییچینگ متغیر و جریان موجی بالا وجود دارد که آن را برای بسیاری از زمینه ها و کاربرد ها نامطلوب ساخته است. از سوی دیگر، کنترل گر های PWM خصوصیات حلقه کنترل بهتری را در مقایسه با انواع مشابه هیسترزیس در اختیار می گذارند و این در حالی است که طراحی آن ها پیچیده تر بوده و مستلزم کارهای رایانشی و محاسبات بیشتری هستند و چنین موانعی را می توان با استفاده از پردازش گر های سیگنال دیجیتال DSPs برطرف کرد. به علاوه به منظور دستیابی به کارایی بالا، SRM باید تحت اشباع مغناطیسی عمل کند(۶). این اثر مربوط به سطح جریان و تغییر رلوکتانسی مغناطیسی با توجه به موقعیت رتور است که موجب دینامیک غیر خطی همه خصوصیات مناسب ماشینی می شود.
برای عملکرد محرک های SRM، حلقه های جریان نقش اصلی را در سرعت های پایین ایفا می کنندجایی که گشتاور یا نیروی پیچشی تقریبا با جریان محدود می شود. در نتیجه، برای دستیابی به کنترل گشتاور یا نیروی پیچشی، کنترل ردیابی دستور صحیح جریان نیاز است( ۱-۲). با این حال اگر جریان به خوبی تنظیم و در موقعیت صحیح رتور سوییچ نشود، همه اثرات منفی نظیر ارتعاشات گشتاوری بالا و نویز آکوستیک تشدید می شوند. با افزایش سرعت، نیروی الکتروموتیو برگشتی (EMF) تا سطحی افزایش می یابد که در آن ولتاژ قابل دسترس برای تنظیم جریان ناکافی می شود در حالی که سیستم کنترل به طور طبیعی حالت تک پالسی را برای دستیابی به ماکزیمم ولتاژ موجود برای عملیات سرعت بالا فرض می کند.سپس گشتاور یا نیروی پیچشی را می توان تنها با تعدیل مناسب زوایای پالس های جریان کنترل کرد(۶). توانایی پایش و ردیابی نقطه تنظیم دینامیکی و بازیابی اغتشاشات باری بدون موج گشتاور دو چالش مهم برای عملکرد بالا در محرک های SRM می باشند( ۷-۸). چندین محقق روش های مبتنی بر تعیین پروفیل جریان برای کمینه سازی موج گشتاور ( ۱-۲-۹-۱۰) ارایه کرده اند. اغلب، تنظیم کننده های جریان تناسبی-انتگرالی در محرک های SRM با عملکرد محدود به کار برده شده اند( ۲-۱۱). با این حال به دلیل خصوصیات غیر خطی کارخانه ای، عملکرد خوب و عملیات پایدار، دستیابی به عملکرد مناسب در طول کل دوره عملیاتی مشکل است. مشخصه غیر خطی مدل SRM بیانگر یک چالش مهم فنون کنترل پیشرفته و کلاسیک است که الهام بخش محققان مختلف برای ارایه فنون کنترل جریان در جهت غلبه بر این محدودیت(۲-۱۱-۱۴) است.

بخشی از مقاله انگلیسی:

This paper proposes a robust control based on generalized predictive control (GPC) applied to the current control loop for a switched reluctance motor (SRM) drive. The pro- posed controller has two degrees of freedom where the setpoint tracking is decoupled from the load disturbance rejection at the nominal case. In addition a filter design is pro- posed in order to achieve good relationship among robustness, load disturbance rejec- tion, and noise attenuation. Simulation and real experimental results are shown to illustrate the controller performance. [DOI: 10.1115/1.4026128]

۱ Introduction

SRMs are an alternative and modern solution to electromechan- ical conversion with variable speed. The availability of high- frequency switching devices and improvements in machine design, associated with SRM intrinsic simplicity, reliability, low cost, high power capacity, and fault tolerant operation have made it a viable replacement for conventional motor drives [ 1 , 2 ]. SRMs have been traditionally controlled by either open loop hysteresis or closed-loop pulse-width-modulation (PWM) current controllers. Each scheme presents advantages and drawbacks with regard to parametric variations, accuracy, robustness, and dynamic response over the entire speed range. The hysteresis cur- rent controller is popular because of its inexpensive, simple, and easy-to-use architecture [ 3 – ۵ ]. However, there are well known disadvantages, such as variable switching frequency and high rip- ple current, making it undesirable for many applications. On the other hand, PWM controllers provide better control loop charac- teristics compared to their hysteresis counterparts, although they are more complex to be designed and require more computation effort, such drawbacks can be overcome by using digital signal processors (DSPs). In addition, in order to achieve improved effi- ciency the SRM must operate under magnetic saturation [ 6 ]. This effect associated with the current level and the variation of mag- netic reluctance with respect to rotor position results in highly nonlinear dynamics of all the machine relevant characteristics. For the high performance operation of SRM drives, the current loop plays a major role, mainly at low speeds where the torque is only limited by the current. As a consequence, to achieve good torque control, accurate current command tracking control is required [ 1 , 2 ]. However if the current is not properly modulated and switched at the correct rotor position all negative effects e.g., high torque pulsation and acoustic noise are intensified. As the speed increases, the back electromotive force (EMF) increases to a level where the available voltage becomes insufficient to regulate the current, while the control system should naturally assume single pulse mode to achieve the maximum available voltage for high- speed operation. The torque can then be controlled only by properly adjusting the angles of the current pulses [ 6 ]. The ability of tracking the dynamic setpoint and recovering from load disturbances with- out torque ripple are two important challenges for high performance in SRM drives [ 7 , 8 ]. Several researchers have proposed current profiling-based methods to minimize torque ripple [ 1 , 2 , 9 , 10 ]. Often, proportional-integral (PI) current regulators have been applied in SRM drives with limited performance [ 2 , 11 ]. However, due to the aforementioned nonlinear plant characteristics, good per- formance, and stable operation are difficult to achieve over the entire operating range. The nonlinear characteristic of the SRM model represents a challenge to classical and advanced control techniques, thus motivating several researchers to propose current control techniques to overcome this drawback [ 2 , 11 – ۱۴ ]. In literature, it is easy to find numerous examples about advanced control techniques in current control of SRMs using adaptive control, neural network controllers, and fuzzy logic con- trol [ 15 – ۱۷ ]. Model-based predictive control (MPC) has also been used in SRM control [ 18 , 19 ] aggregating a series of advantages over other methods, amongst which the following ones stand out [ 20 , 21 ]: (a) It is particularly attractive for users with limited knowledge about control because the concepts are very intuitive. (b) Simplicity of tuning considering both setpoint tracking and disturbance rejection. (c) A specified performance criterion is minimized on-line. (d) In the worst case, its performance is simi- lar to a proportional-integral-derivative (PID) controller with optimal tuning. (e) Its extension to the treatment of constraints is conceptually simple, which can be systematically included during the design process. Despite of the advantages related to MPC, due to its high computational cost, real applications in drive systems are very rare and most of the papers present only simulation results [ 18 , 19 , 22 , 23 ]. Within this context, this paper presents a ro- bust control structure with low computational cost based on GPC [ 24 ] which belongs to a MPC family. Although the usual argu- ment against the GPC is its demand for processing power, this pa- per overcomes this issue by using a simplified version of GPC which allows obtaining a similar performance than that developed by its usual counterpart, as input constraints specifications can be included. The paper is then organized as follows: Sec. 2 presents an over- view of modeling and identification of current loop for SRM drive. A review on GPC is introduced in Sec. 3 . Section 4 describes the proposed controller and its robustness and stability is analyzed in Sec. 5 . In Sec. 6 presents experimental results, while the relevant conclusions are discussed in Sec. 7 . 2 Modeling and Identification of SRM Drive Current Loop Models can be derived from the physical laws governing the relationship amongst variables or empirical models derived from data obtained from the process. They can also be classified as ei- ther linear or nonlinear models. In cases where nonlinear models are used to design the control strategy, nonlinear controllers are essential to achieve improved performance. Therefore, they are not feasible in applications with fast dynamics such as SRM drives because the computational time is very limited and control- lers require high computation performance. On the other hand, if linear models are used, the designed controller must be robust enough to compensate for the unmodeled dynamics. Continuous and discrete linear models for SRMs are described as follows. 2.1 Small Signal Modeling of SRM Drives. An asymmetri- cal bridge converter applied to SRM drives can be modeled using the small-signal technique relating the duty cycle to the output current. Considering the average voltage across the phase winding during one switching period, the transfer function is given by [ 25 , 26 ].

 

نوشته های مشابه

دیدگاهتان را بنویسید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *

دکمه بازگشت به بالا