دانلود رایگان مقاله انگلیسی + خرید ترجمه فارسی | |
عنوان فارسی مقاله: |
الگوریتم کلونی پیشرفته زنبور عسل برای حفظ تعادل کارآمد بار و برنامه ریزی در ابر |
عنوان انگلیسی مقاله: |
Enhanced Bee Colony Algorithm for Efficient Load Balancing and Scheduling in Cloud |
|
مشخصات مقاله انگلیسی (PDF) | |
سال انتشار | 2015 |
تعداد صفحات مقاله انگلیسی | 12 صفحه با فرمت pdf |
رشته های مرتبط با این مقاله | مهندسی کامپیوتر |
گرایش های مرتبط با این مقاله | مهندسی الگوریتم ها و محاسبات، رایانش ابری |
چاپ شده در مجله (ژورنال) | نوآوری در محاسبات الهام گرفته از فرآیند زیستس و برنامه های کاربردی – Innovations in Bio-Inspired Computing and Applications |
کلمات کلیدی | رایانش ابری، برنامه ریزی کار، زنبور عسل الگوریتم کلونی، موازنه بار، QOS |
ارائه شده از دانشگاه | دانشکده مهندسی دولتی، کرالا، هند |
رفرنس | دارد ✓ |
کد محصول | F988 |
نشریه | اسپرینگر – Springer |
مشخصات و وضعیت ترجمه فارسی این مقاله (Word) | |
وضعیت ترجمه | انجام شده و آماده دانلود |
تعداد صفحات ترجمه تایپ شده با فرمت ورد با قابلیت ویرایش | 14 صفحه با فونت 14 B Nazanin |
ترجمه عناوین تصاویر و جداول | ترجمه شده است ✓ |
ترجمه متون داخل تصاویر | ترجمه شده است ✓ |
ترجمه متون داخل جداول | ترجمه شده است ✓ |
درج تصاویر در فایل ترجمه | درج شده است ✓ |
درج جداول در فایل ترجمه | درج شده است ✓ |
درج فرمولها و محاسبات در فایل ترجمه | به صورت عکس درج شده است ✓ |
منابع داخل متن | به صورت عدد درج شده است ✓ |
کیفیت ترجمه | کیفیت ترجمه این مقاله متوسط میباشد |
فهرست مطالب |
چکیده
1. مقدمه
2. مرور منابع
3 . الگوریتم کلونی اصلاح شده زنبور عسل برای حفظ تعادل بار
1.3 . ماشین های مجازی کنونی محاسبه بار
2.3 . بالانس بار و برنامه ریزی تصمیم گیری
3.3 . گروه بندی ماشین های مجازی
3.4 . زمانبندی وظایف
4 نتایج تجربی
5 نتیجه گیری
|
بخشی از ترجمه |
چکیده : 1. مقدمه |
بخشی از مقاله انگلیسی |
Abstract Cloud computing is a promising paradigm which provides resources to customers on their request with minimum cost. Cost effective scheduling and load balancing are major challenges in adopting cloud computation. Efficient load balancing methods avoids under loaded and heavy loaded conditions in datacenters. When some VMs are overloaded with several number of tasks, these tasks are migrated to the under loaded VMs of the same datacenter in order to maintain Quality of Service (QoS). This paper proposes a modification in the bee colony algorithm for efficient and effective load balancing in cloud environment. The honey bees foraging behaviour is used to balance load across virtual machines. The tasks removed from over loaded VMs are treated as honeybees and under loaded VMs are the food sources. The method also tries to minimize makespan as well as number of VM migrations. The experimental result shows that there is significant improvement in the QoS delivered to the customers. 1 Introduction Cloud computing is an emerging technology completely rely on internet, in which all the data and applications are hosted on a datacenters, which consists of thousands of computers interlinked together in a complex manner. The cloud providers adopt pay as you use model for their resource utilization. Over the Internet, the customers can use computation power, software resources, storage space, etc., by paying money only for the duration he has used the resource. Besides Internet, customers, datacenters, and distributed servers are the main three components of a cloud eco system. Datacenter is a collection of servers hosting different applications and also provides storage facility. In order to subscribe for different applications, end user needs to connect to the datacenter. Usually a datacenter is situated far away from the end users. Distributed servers are the parts of a cloud environment which are present throughout the Internet hosting different applications. In order to ensure QoS efficient scheduling and load balancing among nodes are required in the distributed cloud environment. In cloud computing ensuring QoS is crucial for customer satisfaction. An efficient load balancing mechanism tries to speed up the execution time of user requested applications. It also reduces system imbalance and gives a fair access to the users. Better load balancing will result in good QoS metrics such as efficient resource utilization, scalability, response time, fault tolerance. Also migration time can be improved by better load balancing. The improvement in the above factors will ensure good QoS to the customers thereby less Service Level Agreement (SLA) violations. The dynamic nature of cloud computing environment needs a dynamic algorithms for efficient and efficient scheduling and load balancing among nodes. Static load balancing algorithms will works only when small variation in the workloads. Cloud scheduling and load balancing problems are considered as NP hard problems. Nature inspired algorithms plays a vital role in solving dynamic real time problems, which are hard to solve by normal methods. These NP hard problems are hard to solve within a time limit. Nature inspired algorithms produce optimal or near optimal solutions to these real time problems in polynomial time interval. The idea behind swarm intelligence algorithm is that local interaction of many simple agents to attain a simple objective. The Bee Colony algorithm is a swarm intelligence algorithm [1] based on the foraging behavior of honey bee colonies to solve numerical function optimization problems. It mimics the foraging behavior of honey bees. It has advantages such as memory, multi-character, local search and solution improvement mechanism, so it is an excellent solution for optimization problems [2–4]. The algorithm consists of scout bees, forager bees and food source. In bee hives, scout bees forage for food sources. After finding a food source it returned to bee hive and performs a waggle dance. Based on waggle dance other bees in the hive get information about quantity of food and distance from the bee hive. Then forager bees follow the scout bees to the location of bee hive and begin to reap it. The positions of food sources are randomly selected by the bees. In the proposed method, bee colony algorithm is modified and it is applied to efficiently schedule and balance the load among cloud nodes in the dynamic cloud environment. Here this method considers previous state of a node while distributing the load. For load balancing the bee colony algorithms parameters are mapped to cloud environment for achieving load balancing. The algorithm tries to achieve minimum response time and completion time. The remaining part of this paper is organized as follows. Section 2 describes about different kinds of load balancing methods in cloud. Enhanced bee colony algorithm and its architecture described in Sect. 3. The Sect. 4 gives experimental results and analysis. Finally this paper concludes in Sect. 5. |