دانلود رایگان ترجمه مقاله طراحی عوارض مبتنی بر سرعت برای قیمت گذاری باجه های عوارضی پرتراکم – الزویر ۲۰۱۳

دانلود رایگان مقاله انگلیسی طراحی عوارض مبتنی بر سرعت برای باجه های عوارض مناطق پر تراکم به همراه ترجمه فارسی

 

عنوان فارسی مقاله: طراحی عوارض مبتنی بر سرعت برای باجه های عوارض مناطق پر تراکم
عنوان انگلیسی مقاله: Speed-based toll design for cordon-based congestion pricing scheme
رشته های مرتبط: مهندسی عمران و مهندسی کامپیوتر، برنامه ریزی حمل و نقل، مهندسی الگوریتم ها و محاسبات و هوش مصنوعی
فرمت مقالات رایگان مقالات انگلیسی و ترجمه های فارسی رایگان با فرمت PDF میباشند
کیفیت ترجمه کیفیت ترجمه این مقاله متوسط میباشد 
نشریه الزویر – Elsevier
کد محصول f419

مقاله انگلیسی رایگان (PDF)

دانلود رایگان مقاله انگلیسی

ترجمه فارسی رایگان (PDF)

دانلود رایگان ترجمه مقاله

خرید ترجمه با فرمت ورد

خرید ترجمه مقاله با فرمت ورد
جستجوی ترجمه مقالات جستجوی ترجمه مقالات مهندسی عمران

 

بخشی از ترجمه فارسی مقاله:

۱٫ معرفی
مشکل عوارضی برای طرح‌های قیمت‌گذاری مناطق پرتراکم تعیین هزینه‌های بهینه بر اساس یک یا چند هدف و بر اساس مکان‌های گرفتن هزینه هست. دو طرح دریافت عوارض در مناطق پرتراکم توجه زیادی را به خود جلب کرده‌اند و به‌طور جامع مورد بررسی قرارگرفته‌اند: اول (Pigouvian) و دومین قیمت‌گذاری‌های بهینه (به‌نقد و بررسی لوئیس،۱۹۹۳؛ یانگ و هواسنگ، ۲۰۰۵؛ لوفوپنیک و همکاران، ۲۰۰۶؛ کوچک و ورهوف، ۲۰۰۷؛ مطالعات اخیر پالماو لیندزی، ۲۰۱۱ نگاه کنید).
بعضی از اجزای سیستمی در سطح وسیع برای طراحی هزینه‌های این دو طرح استفاده شده است برای مثال مجموع مزایای اجتماعی، کل زمان سفر و درآمد عوارضی. بااین‌حال، در مقایسه با این اجزای وسیع سیستم، دولت و مقامات مسئول شبکه معمولاً بیشتر در مورد شرایط ترافیکی در یک منطقه تجاری مرکزی (CBD) نگران هستند قلب تجاری یک شهر، جایی که تراکم ترافیک احتمالاً موجب زیان‌های اقتصادی بیشتری می‌شود و اثرات مخربی بر روی تصویر شهر دارد بنابراین، با توجه به اجرای عملی طرح‌های قیمت‌گذاری مکان‌های متراکم، کاهش ترافیک در CBD معمولاً به‌عنوان هدف اولیه محسوب می‌شود.
طرح قیمت‌گذاری عوارضی مبتنی بر انحراف معیار برای بهبود وضعیت ترافیک در CBD، یک مزیت است زیرا دریافت عوارضی رایک منطقه خاص را تحت نظر گرفته (معمولاً CBD) و از هر خودرو را که وارد شود هزینه دریافت می کند؛ بنابراین حجم کل ورودی محدود شده و حجم تراکم ترافیک در این منطقه به‌طور فراوانی کاهش می‌یابد. علاوه بر این، طرح‌های مربوط به محاسبه قیمت تمام‌شده در سراسر منطقه تحت پوشش عوارضی ازنظر عملیات و نظارت در مقایسه با طرح‌های قیمت‌گذاری اول و دوم که هدف آن بهبود هدف کلی سیستم است، مناسب‌تر هستند.
تا به حال، اکثر برنامه‌های کاربردی دریافت عوارض مناطق پرتراکم، مبتنی بر عوارضی‌ها هستند به‌عنوان‌مثال طرح صدور مجوز (ALS) در سنگاپور (ته و فانگ، ۱۹۹۷؛ لی، ۱۹۹۹) که در سال ۱۹۹۸ به سیستم ارزیابی جاده الکترونیک (ERP)، (سانتوس، ۲۰۰۸) و بر اساس قانون جدیدی در استکهلم (Eliasson، ۲۰۰۹) ارتقاء یافت. شایان‌ذکر است که برنامه عوارضی استکهلم حتی طرحی را برای جریمه خودروهایی که عوارضی را ترک می‌کنند دارد.
میانگین سرعت سفر یک معیار ایده آل از شرایط ترافیکی در منطقه‌ای است که توسط یک باجه عوارضی محافظت می‌شود (که باجه همیشگی نامیده می‌شود) در اینجا مشاهده ستون یا تراکم ترافیک (لی، ۲۰۰۲) ساده‌تر است و همچنین سابقه رانندگی مسافر را بهتر عنوان می‌کند.
در سیستم ERP مبتنی بر عوارضی در سرتاسر سنگاپور، هدف این است که میانگین سرعت وسایل نقلیه را در مناطق پرتراکم در محدوده موردنظر نگه‌داریم: این میانگین [۲۰، ۳۰] کیلومتر در ساعت است که با تنظیم هزینه‌های عوارضی این هدف حاصل می‌شود. اولزکی ۲۰۰۵٫ توجه داشته باشید که حد پایین این محدوده سفرهای مداوم قابل‌قبول را پشتیبانی می‌کند. حد بالای سرعت سفر ایمنی ترافیک را بررسی کرده و همچنین از اتلاف منابع جاده‌ها با اطمینان از مناسب بودن وسیله نقلیه‌ای که در مناطق پرتراکم سفر می‌کند جلوگیری می‌کند.
در اینجا، الگویی محاسبه هزینه عوارضی‌ای که سرعت وسایل نقلیه را در مناطق پرتراکم در محدوده میانگین پیش‌فرض نگه می‌دارد، طراحی مبتنی بر سرعت نامیده می‌شود. باوجود اهمیت عملی آن، مشکلات مربوط به طراحی چنین الگویی هنوز مورد سؤال است، ازآنجاکه تعداد کمی از تحقیقات موجود در مورد مشکلات طراحی عوارضی شرایط ترافیک در CBD را به‌عنوان یک جزء و سرعت سفر به‌عنوان را به‌عنوان یک معیار برای عملکرد شبکه در نظر گرفته آن‌ها را مورداستفاده قرار می‌دهند.
مدل‌سازی طراحی عوارضی نیاز به تجزیه‌وتحلیل مسئله انتخاب مسیر مسافران دارد و یک فرضیه ساده در اینجا مطرح است که به ما می‌گوید مسافران معمولاً مسیر کم‌هزینه‌تر را بر اساس زمان سفری که از قبل در نظر گرفته‌اند انتخاب می‌کنند.
اصل تعادل کاربر تصادفی (SUE) به‌عنوان یک چارچوب برای مشکل انتخاب مسیر در نظر گرفته‌شده است. برای تناسب بهتر آن با شرایط واقع بیان این اصل با تعادل جبرانی (DUE) و SUE موارد مبتنی بر لوجبت قیاس شده است. (شفی ۱۹۸۵، ص ۳۱۸).
هزینه سفر مسافران شامل دو جزء است: هزینه زمان سفر و هزینه عوارضی که در واحدهای مختلف بیان می‌شود. ارزش زمان (VOT) باید هزینه های عوارضی را به واحد های زمان برای تجزیه و تحلیل تبدیل کند.
(به عنوان مثال، لام و اسمال، ۲۰۰۱؛ یانگ و همکاران، ۲۰۰۱؛ اسمال و همکاران، ۲۰۰۵). VOT عمدتا تحت تاثیر سطح درامد مسافران و ضرورت سفر بستگی دارد بنابراین می تواند در میان مسافران به میزان قابل توجهی متفاوت باشد. یافتن دو مسافر در شبکه با ارزش VOT یکسان دشوار است، بنابراین در یک سطح کلی، بهتر است VOT به عنوان یک متغیر تصادفی توزیع پیوسته مطرح شود.
اصل متغیر تصادفی SUE مبتنی بر پروبیت و متغیر پیوسته VOT توزیع پیوسته هر دو چالش های مدل سازی و حل مسئله طراحی عوارضی مبتنی بر سرعت که اهداف این مقاله است را افزایش می دهند.

۱٫۱ مطالعات مربوطه
محاسبه هزینه های حاشیه ای به عنوان یک راه حل برای اولین طرح قیمت گذاری با هدف بهینه سازی شاخص کلی سیستم مانند شاخص کل سود اجتماعی و یا شاخص کل زمان سفر (یانگ و هوانگ، ۲۰۰۵؛ Lawphongpanich) به خوبی شناخته شده است.
اعتبار هزینه های حاشیه ای برای شبکه های حمل و نقل عمومی به وسیله مطالعات بسیاری با فرایند های گوناگونی ثابت شده است. به عنوان مثال، با تقاضاهای الاستیک یا منعطف با محدودیت های SUE مبتنی بر لوجیت (یانگ و هوانگ، ۱۹۹۸)، با محدودیت های SUE عمومی (ماهرو همکاران، ۲۰۰۵) و با تقاضای تصادفی سومالی،۲۰۱۱٫ االگوی قیمت هزینه های حاشیه ای بهینه به راحتی می تواند با حل مشکل ترافیک به دست آید.
یان همکاران در سال ۲۰۰۴ و ژائو و کوکلمن (۲۰۰۶) یک روش محاسباتی مبتنی بر مهنسی و آزمون خطا را طراحی کرده اند. در آنجا به محدودیت های DUE و محدودیت های SUE مبتنی بر logit که در آن تقاضای سفر برای محاسبه مورد نیاز نیست، تتوجه شده است. تحقیقات یانگ و همکاران (۲۰۰۴) توسط هان و یانگ (۲۰۰۹) و یانگ وهمکارانش در سال ۲۰۰۹ به طور کارامدی گسترش یافته است.
الگوی قیمت گذاری های حاشیه ای نیاز به این دارد که از هر لینکی هزینه دریافت کند، بنابراین در زندگی واقعی این کار عملی نیست. اگر فرض بر این شود که یک نسبت خاص در شبکه هزینه گرفته شده است، می توان طرح دوم قیمت گذاری را بدست آورد (یانگ و همکاران، ۲۰۱۰). روش بهینه قیمت گذاری دوم مشکلات را می توان به عنوان یک مدل برنامه ریزی دو سطحی، در نظر گرفت که در آن سطح بالاتر به منظور شاخص بهینه سازی هر سیستم در نظر گرفته شده و سطح پایین مشکل تخصیص ترافیکی می باشد. مشکل سطح پایین تر می تواند به عنوان محدودیت در سطح بالا در نظر گرفته شود و یک فرم برنامه ریزی ریاضی با محدودیت های تعادلی (MPEC) را به ما ارائه می دهد. (به مثال های مک دونالد، ۱۹۹۵؛ Bellei et al. 2002؛ چن و برنشتاین، ۲۰۰۴ نگاه کنید). برنامه نویسی دو سطحی یا مدل MPEC می تواند توسط روش های مختلف، از جمله الگوریتم تکرار بهینه سازی تخصیص (Allsop، ۱۹۷۴)، بهینه سازی تجزیه تعادل، (سوان و همکاران، ۱۹۸۷)، الگوریتم مبتنی بر حساسیت تجزیه و تحلیل (یانگ، ۱۹۹۷؛ کلارک و واتلینگ،۲۰۰۲؛ کانرز و همکاران، ۲۰۰۷)، الگوریتم لاگرانژی تکمیل شده (منگ و همکاران، ۲۰۰۱) و روش های مبتنی بر شیب (Chiou، ۲۰۰۵) حل شده است. گرچه طرح قیمت گذاری مبتنی بر عوارض نوع خاصی از روش بهینه قیمت گذاری دوم است، همانگونه که در بالا ذکر شداین روش ها به علت وجود VOT پیوسته نمی توانند برای مشکلات طراحی مبتنی بر سرعت که در این مطالعه مورد توجه قرار گرفته اند، مورد استفاده قرار بگیرند.
همانطور که در بالا ذکر شد، از VOT برای تبدیل هزینه های عوارض به واحد های زمانی به منظور تحلیل انتخاب مسیر رفت و آمد مسافر استفاده می شود
VOT ذاتا تحت تاثیر عوامل بسیاری است، از جمله نرخ دستمزد، زمان روز، هدف سفر، اهمیت اعتبار زمان سفر و غیره؛ بنابراین نرخ VOT می تواند به طور گسترده ای بین مسافران مختلف متفاوت باشد. منطقی است که VOT را به عنوان یک متغیر تصادفی تیع شده پیوسته در سراسر جمعیت به جای اینکه فرض بر همگن و ثابت بودن کاربران شبکه با کلاسهای کاربر محدود یا با VOT های گسسته در نظر بگیریم.
(هان و یانگ، ۲۰۰۸). با این حال، مطالعات مربوط به مسائل مربوط به قیمت گذاری منطق پر تراکم، یاهر گونه مشکلات دیگر مربوط به مدل سازی شبکه حمل و نقل، با VOT توزیع پیوسته بسیار کمیاب هستند. میت و هانسن (۲۰۰۰) مشکل طراحی مشاغل با VOT پیوسته را در یک شبکه با دو مسیر تحلیل می کنند: یک بزرگراه با هزینه عوارضی و یک مسیر کمکی با هزینه سفر ثابت. عبارت هزینه عوارضی ای که به نفع کاربران است توسط مایت و هانسن مطرح شده است و آنها همچنین در مورد اثرات توزیع VOT بر خصوصیت های پارتو مائلی را مطرح کرده اند. همچنین بر اساس این دو مسیر، اسمال و ور هوف (۲۰۰۴) بهترین روش قیمت گذاری را با VOT پیوسته بررسی کردند. شیائو و یانگ (۲۰۰۸) تحقیقات مایت و حسن (۲۰۰۰) را برای تعامل با معامله های انتقال عملیات ساخت و ساز (BOT) برای برنامه های معافیت بزرگراه با VOT پیوسته شده گسترش داده اند.
اخیرا نی و لو یک تحلیل عمیق تر در مورد تاثیر توزیع های مختلف VOT در بهبود طرح قیمت گذاری پارتو بیان کرده اند با این حال، این مطالعات همه برپایه شبکه با دو مسیر و برای حمل و نقل شبکه با بیش از دو مسیر ممکن است این یافته ها ممکن است عملی نشوند. برای یک شبکه حمل و نقل عمومی، بر فرض صل DUE، لورنت (۱۹۹۳) و دایل (۱۹۹۶، ۱۹۹۷) در مورد مشکل تخصیص ترافیک با توزیع پیوسته بحث می کنند.
با فرض SUE مبتنی بر انحراف معیار با تقاضای ثابت، کانتارلا و بینتی (۱۹۹۸) یک مدل الگوریتم ریاضی و راه حلی برای مشکل تخصیص ترافیک با VOT توزیع پیوسته پیوسته، با استفاده از مسیر مبتنی بر روش شبیه سازی مونت کارلو برای حل مشکل بارگذاری تصادفی (SNL) ارائه کرده اند. منگ و همکاران (۲۰۱۲). تحقیقات آنها را در سال (۱۹۹۸) را با پیشنهاد روش شبیه سازی مونت کارلو مبتنی بر لینک ادامه داده که در این مقاله برای حل مشکل طراحی مبتنی بر سرعت با محدودیت های VOT پیوسته و SUE اصلاح و از آن استفاده شده است.

بخشی از مقاله انگلیسی:

۱٫ Introduction

The toll design problem for congestion pricing schemes refers to the determination of the optimal toll charge according to one or more objectives, based on given charging locations. Two congestion pricing schemes have received much attention and been comprehensively investigated: first-best (Pigouvian) and second-best pricing (see the monograph by Lewis, 1993; Yang and Huang, 2005; Lawphongpanich et al., 2006; Small and Verhoef, 2007; and a recent review by de Palma and Lindsey, 2011). Some system-wide objectives are usually adopted for the toll design of these two schemes, for instance, the total social benefit, total travel time and toll revenue. However, compared with these system-wide objectives, government and network authorities are usually more concerned about the traffic conditions in a central business district (CBD), the commercial heart of a city, where traffic congestion is likely to cause greater economic losses and worse impacts on a city’s image. Thus, regarding the practical implementation of congestion pricing schemes, mitigating traffic congestion in the CBD is usually taken as a primary target. A cordon-based congestion pricing scheme is advantageous for improving the traffic condition in a CBD as it defines a pricing cordon, encircling a certain area (usually the CBD), and charges each incoming vehicle; the total inbound volume is thus limited and traffic congestion in this area significantly ameliorated. Additionally, area-wide cordon-based pricing schemes are more convenient in terms of operation and supervision, compared with first-best and second-best pricing, which aims to optimize a system-wide objective. Until now, most applications of congestion pricing are cordon-based, for instance the Area Licensing Scheme (ALS) in Singapore (Phang and Toh, 1997; Li, 1999) that was upgraded in 1998 to the Electronic Road Pricing (ERP) system (Olszewski and Xie, 2005), the London Congestion Charging Scheme (Santos, 2008), and a more recent trial in Stockholm (Eliasson, 2009). It should be pointed out that the Stockholm congestion charge scheme also levies tolls on vehicles leaving the charging area. Average travel speed is an ideal measure of the traffic conditions in an area guarded by a pricing cordon (called a cordon area hereafter), in that it is much easier to observe than traffic column or density (Li, 2002) and is also a better representative of the commuter’s driving experience. In the cordon-based ERP system in Singapore, the objective is to keep the average speed of vehicles in the cordon area within a target range: [20, 30] km/h, which is achieved by adjusting the toll charges (Olszewski and Xie, 2005). Note that the lower-bound of this range guarantees a reasonably rapid travel. The upper-bound on travel speed is a concern about traffic safety, and it also avoids a waste of the road resources by ensuring that sufficient vehicles are traveling in the cordon area. Herein, the search for a toll charge pattern that will keep the average travel speed of vehicles in the cordon area within a predetermined target range is named the speed-based toll design problem. Despite its practical significance, the problem is still an open question, since few of the existing studies of toll design problems have taken the traffic conditions in the CBD as an objective or used travel speed as a criterion for network performance. Modeling the toll design problem requires an analysis of the commuters’ route choice problem, and a simple assumption is made here that the commuters will select the path with minimal travel cost based on their pre-trip perceived travel times. The probit-based stochastic user equilibrium (SUE) principle is adopted as a framework for the route choice problem, in view of its better suitability to realistic conditions compared with the deterministic user equilibrium (DUE) and logit-based SUE cases (Sheffi, 1985, p. 318). The commuters’ travel costs consist of two components: travel time cost and toll charge, which are expressed in different units. The value-of-time (VOT) is needed to convert the toll charges into time units for the analysis (e.g., Lam and Small, 2001; Yang et al., 2001; Small et al., 2005). The VOT is largely influenced by the commuters’ level of income and trip emergency, thus it can vary significantly among commuters. It is difficult to find two commuters on the network with identical VOT values, thus at an aggregate level, it is more suitable to define the VOT as a continuously distributed random variable. The probit-based SUE principle and continuously distributed VOT both increase the challenges involved in modeling and solving the speed-based toll design problem, which are the aims of this paper.

۱٫۱٫ Relevant studies

It has been well recognized that marginal cost pricing is a solution to the first-best pricing scheme with the objective of optimizing a system-wide index such as the total social benefit or total travel time (Yang and Huang, 2005; Lawphongpanich and Yin, 2012). The validity of marginal cost pricing for general transportation networks has been proven by many studies under different assumptions, for example, with elastic demand (Huang and Yang, 1996), with logit-based SUE constraints (Yang and Huang, 1998), with general SUE constraints (Maher et al., 2005), and with stochastic demand (Sumalee and Xu, 2011), to name a few. The optimal marginal cost pricing scheme can easily be obtained by solving a traffic assignment problem. An engineering-oriented trial-and-error method was proposed by Yang et al. (2004) and Zhao and Kockelman (2006) with DUE constraints and logit-based SUE constraints respectively, where the travel demand is not required for the calculation. The work of Yang et al. (2004) was recently extended by Han and Yang (2009) and Yang et al. (2009) using more effi- cient step sizes. Marginal cost pricing requires each link to be charged, thus it is not practical in real life. If one assumes that only a proportion of the network is charged, the second-best pricing scheme can be obtained (Yang et al., 2010). Second-best pricing problems can be formulated as a bi-level programming model, where the upper-level is to optimize any given system-wide index and the lower-level is a traffic assignment problem. The lower-level problem can be treated as a constraint on the upper-level problem, giving a form of mathematical programming with equilibrium constraints (MPEC) model (see, e.g., McDonald, 1995; Bellei et al., 2002; Chen and Bernstein, 2004, to name a few). The bi-level programming or MPEC model can be solved by various methods, including the iterative optimization-assignment algorithm (Allsop, 1974), equilibrium decomposed optimization (Suwansirikul et al., 1987), the sensitivity-analysis-based algorithm (Yang, 1997; Clark and Watling, 2002; Connors et al., 2007), the augmented Lagrangian algorithm (Meng et al., 2001) and gradient-based descent methods (Chiou, 2005). Although the cordon-based pricing scheme is a special type of second-best pricing, the aforementioned methods cannot be used for the speed-based toll design problem addressed in this study, due to the existence of continuously distributed VOT. As mentioned above, the VOT is used to convert the toll charges into time units so as to analyze the commuters’ route choice problem. The VOT is inherently influenced by many factors, including wage rate, time of day, trip purpose, importance of travel time reliability, etc. Thus, VOT can vary widely between commuters. It is thus more rational to take VOT to be a continuously distributed random variable across the population instead of assuming homogeneous network users with constant VOT or limited user classes with discrete VOTs (Han and Yang, 2008). Yet, studies of congestion pricing problems, or any other transportation network modeling problems, with continuously distributed VOT are quite scarce. Mayet and Hansen (2000) analyzed the toll design problem with continuous VOT on a network with two paths: one congested highway with a toll charge and one alternative path with a fixed travel cost. Expressions for the toll charge that maximizes the total user benefit were given by Mayet and Hansen, and they also discussed the effects of the distribution of VOT on the Pareto properties of the toll charge. Also based on the two-path example, Verhoef and Small (2004) investigated second-best pricing with a continuously distributed VOT. Xiao and Yang (2008) extended the work of Mayet and Hansen (2000) to cope with build-operate-transfer (BOT) contracts for highway franchising programs with continuously distributed VOT. Nie and Liu (2010) recently conducted a more in-depth analysis about the impacts of various distributions of VOT on the Pareto-improving congestion pricing scheme. However, these studies all rely on a network with two paths, while for a general transportation network with more than two paths, the findings may not apply. For a general transportation network, assuming the DUE principle, Leurent (1993) and Dial (1996, 1997) discussed the traffic assignment problem with continuously distributed VOT. Assuming probit-based SUE with fixed demand, Cantarella and Binetti (1998) later investigated a mathematical model and solution algorithm for the traffic assignment problem with continuously distributed VOT, using a path-based Monte Carlo simulation method to solve the stochastic network loading (SNL) problem. Meng et al. (2012) extended the work of Cantarella and Binetti (1998) by proposing a link-based Monte Carlo simulation method, which is modified and employed in this paper to solve the speed-based toll design problem with continuous VOT and SUE constraints.

 

نوشته های مشابه

دیدگاهتان را بنویسید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *

دکمه بازگشت به بالا